ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase Plots of Complex Functions: a Journey in Illustration

40   0   0.0 ( 0 )
 نشر من قبل Elias Wegert
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English
 تأليف Elias Wegert




اسأل ChatGPT حول البحث

We propose to visualize complex (meromorphic) functions $f$ by their phase $P_f:=f/|f|$. Color--coding the points on the unit circle converts the function $P_f$ to an image (the phase plot of $f$), which represents the function directly on its domain. We discuss how special properties of $f$ are reflected by their phase plots and indicate several applications. In particular we reformulate a universality theorem for Riemanns Zeta function in the language of phase plots.

قيم البحث

اقرأ أيضاً

In this paper, by making use of a certain family of fractional derivative operators in the complex domain, we introduce and investigate a new subclass $mathcal{P}_{tau,mu}(k,delta,gamma)$ of analytic and univalent functions in the open unit disk $mat hbb{U}$. In particular, for functions in the class $mathcal{P}_{tau,mu}(k,delta,gamma)$, we derive sufficient coefficient inequalities, distortion theorems involving the above-mentioned fractional derivative operators, and the radii of starlikeness and convexity. In addition, some applications of functions in the class $mathcal{P}_{tau,mu}(k,delta,gamma)$ are also pointed out.
In 2009, the first author introduced a class of zeta functions, called `distance zeta functions, which has enabled us to extend the existing theory of zeta functions of fractal strings and sprays (initiated by the first author and his collaborators i n the early 1990s) to arbitrary bounded (fractal) sets in Euclidean spaces of any dimensions. A closely related tool is the class of `tube zeta functions, defined using the tube function of a fractal set. These zeta functions exhibit deep connections with Minkowski contents and upper box (or Minkowski) dimensions, as well as, more generally, with the complex dimensions of fractal sets. In particular, the abscissa of (Lebesgue, i.e., absolute) convergence of the distance zeta function coincides with the upper box dimension of a set. We also introduce a class of transcendentally quasiperiodic sets, and describe their construction based on a sequence of carefully chosen generalized Cantor sets with two auxilliary parameters. As a result, we obtain a family of maximally hyperfractal compact sets and relative fractal drums (i.e., such that the associated fractal zeta functions have a singularity at every point of the critical line of convergence). Finally, we discuss the general fractal tube formulas and the Minkowski measurability criterion obtained by the authors in the context of relative fractal drums (and, in particular, of bounded subsets of the N-dimensional Euclidean space).
This note establishes smooth approximation from above for J-plurisubharmonic functions on an almost complex manifold (X,J). The following theorem is proved. Suppose X is J-pseudoconvex, i.e., X admits a smooth strictly J-plurisubharmonic exhaustion f unction. Let u be an (upper semi-continuous) J-plurisubharmonic function on X. Then there exists a sequence {u_j} of smooth, strictly J-plurisubharmonic functions point-wise decreasing down to u. On any almost complex manifold (X,J) each point has a fundamental neighborhood system of J-pseudoconvex domains, and so the theorem above establishes local smooth approximation on X. This result was proved in complex dimension 2 by the third author, who also showed that the result would hold in general dimensions if a parallel result for continuous approximation were known. This paper establishes the required step by solving the obstacle problem.
247 - XiaoHuang Huang 2020
In this paper, we study the uniqueness of meromporphic functions and their difference operators. In particular, We have proved: Let $f$ be a nonconstant entire function on $mathbb{C}^{n}$, let $etain mathbb{C}^{n}$ be a nonzero complex number, and le t $a$ and $b$ be two distinct complex numbers in $mathbb{C}^{n}$. If $$varlimsup_{rrightarrowinfty}frac{logT(r,f)}{r}=0,$$ and if $f(z)$ and $(Delta_{eta}^{n}f(z))^{(k)}$ share $a$ CM and share $b$ IM, then $f(z)equiv(Delta_{eta}^{n}f(z))^{(k)}$.
The Patterson-Sullivan construction is proved almost surely to recover a Bergman function from its values on a random discrete subset sampled with the determinantal point process induced by the Bergman kernel on the unit ball $mathbb{D}_d$ in $mathbb {C}^d$. For super-critical weighted Bergman spaces, the interpolation is uniform when the functions range over the unit ball of the weighted Bergman space. As main results, we obtain a necessary and sufficient condition for interpolation of a fixed pluriharmonic function in the complex hyperbolic space of arbitrary dimension (cf. Theorem 1.4 and Theorem 4.11); optimal simultaneous uniform interpolation for weighted Bergman spaces (cf. Theorem 1.8, Proposition 1.9 and Theorem 4.13); strong simultaneous uniform interpolation for weighted harmonic Hardy spaces (cf. Theorem 1.11 and Theorem 4.15); and establish the impossibility of the uniform simultaneous interpolation for the Bergman space $A^2(mathbb{D}_d)$ on $mathbb{D}_d$ (cf. Theorem 1.12 and Theorem 6.7).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا