ﻻ يوجد ملخص باللغة العربية
We provide a scheme for the generation of entangled number states of Bose-Einstein condensates in multiple wells with cyclic pairwise connectivity. The condensate ground state in a multiple well trap can self-evolve, when phase engineered with specific initial phase differences between the neighboring wells, to a macroscopic superposition state with controllable entanglement -- to multiple well generalization of double well NOON states. We demonstrate through numerical simulations the creation of entangled states in three and four wells and then explore the creation of larger entangled states where there are either a larger number of particles in each well or a larger number of wells. The type of entanglement produced as the particle numbers, or interaction strength, increases changes in a novel and initially unexpected manner.
We provide a scheme for the generation of controlled entangled number states of Bose-Einstein condensates in multiple wells, and also provide a novel method for the creation of squeezed states without severe adiabatic constraints on barrier heights.
We revisit in detail the non-mean-field ground-state phase diagram for a binary mixture of spin-1 Bose-Einstein condensates including quantum fluctuations. The non-commuting terms in the spin-dependent Hamiltonian under single spatial mode approximat
In this work we present numerical study of a trapped Bose-Einstein condensate perturbed by an alternating potential. The relevant physical situation has been recently realized in experiment, where the trapped condensate of $^{87}$Rb, being strongly p
Tunneling of a quasibound state is a non-smooth process in the entangled many-body case. Using time-evolving block decimation, we show that repulsive (attractive) interactions speed up (slow down) tunneling, which occurs in bursts. While the escape t
We study systematically the period-doubled Bloch states for a weakly interacting Bose-Einstein condensate in a one-dimensional optical lattice. This kind of state is of form $psi_k=e^{ikx}phi_k(x)$, where $phi_k(x)$ is of period twice the optical lat