ﻻ يوجد ملخص باللغة العربية
We present a study of axial charges of baryon ground and resonant states with relativistic constituent quark models. In particular, the axial charges of octet and decuplet $N$, $Sigma$, $Xi$, $Delta$, $Sigma^*$, and $Xi^*$ baryons are considered. The theoretical predictions are compared to existing experimental data and results from other approaches, notably from lattice quantum chromodynamics and chiral perturbation theory. The relevance of axial charges with regard to $pi$-dressing and spontaneous chiral-symmetry breaking is discussed.
We evaluate the strangeness-conserving $N N$, $SigmaSigma$, $XiXi$, $LambdaSigma$ and the strangeness-changing $Lambda N$, $Sigma N$, $LambdaXi$, $SigmaXi$ axial charges in lattice QCD with two flavors of dynamical quarks and extend our previous work
The magnetic dipole G_M(Q^2), electric quadrupole G_E(Q^2), and Coulomb quadrupole G_C(Q^2) form factors, describing the spin-3/2 to spin-1/2 electromagnetic transitions, are investigated within the light cone QCD sum rules. The Q^2 dependence of the
The self-energies of the full set of flavor SU(3) octet and decuplet baryons are computed within a relativistic chiral effective theory framework. The leading nonanalytic chiral behavior is derived for the octet and decuplet masses, and a finite-rang
We compute the diagonal isovector axial-vector as well as induced pseudoscalar form factors of nucleon, $Sigma$ and $Xi$ baryons by employing the light-cone QCD sum rules to leading order in QCD and including distribution amplitudes up to twist 6. Ex
Transverse densities describe the distribution of charge and current at fixed light-front time and provide a frame-independent spatial representation of hadrons as relativistic systems. We calculate the transverse densities of the octet baryons at pe