ﻻ يوجد ملخص باللغة العربية
In this paper we study extension theorems associated with general varieties in two dimensional vector spaces over finite fields. Applying Bezouts theorem, we obtain the sufficient and necessary conditions on general curves where sharp $L^p-L^r$ extension estimates hold. Our main result can be considered as a nice generalization of works by Mochenhaupt and Tao and Iosevich and Koh. As an application of our sharp extension estimates, we also study the Falconer distance problems in two dimensions.
The first purpose of this paper is to provide new finite field extension theorems for paraboloids and spheres. By using the unusual good Fourier transform of the zero sphere in some specific dimensions, which has been discovered recently in the work
We prove a point-wise and average bound for the number of incidences between points and hyper-planes in vector spaces over finite fields. While our estimates are, in general, sharp, we observe an improvement for product sets and sets contained in a s
We study the finite field extension estimates for Hamming varieties $H_j, jin mathbb F_q^*,$ defined by $H_j={xin mathbb F_q^d: prod_{k=1}^d x_k=j},$ where $mathbb F_q^d$ denotes the $d$-dimensional vector space over a finite field $mathbb F_q$ with
We study the restriction of the Fourier transform to quadratic surfaces in vector spaces over finite fields. In two dimensions, we obtain the sharp result by considering the sums of arbitrary two elements in the subset of quadratic surfaces on two di
We prove that a sufficiently large subset of the $d$-dimensional vector space over a finite field with $q$ elements, $ {Bbb F}_q^d$, contains a copy of every $k$-simplex. Fourier analytic methods, Kloosterman sums, and bootstrapping play an important role.