ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinetic theory for response and transport in non-centrosymmetric superconductors

250   0   0.0 ( 0 )
 نشر من قبل Ludwig Klam
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We formulate a kinetic theory for non-centrosymmetric superconductors at low temperatures in the clean limit. The transport equations are solved quite generally in spin- and particle-hole (Nambu) space by performing first a transformation into the band basis and second a Bogoliubov transformation to the quasiparticle-quasihole phase space. Our result is a particle-hole-symmetric, gauge-invariant and charge conserving description, which is valid in the whole quasiclassical regime. We calculate the current response, the specific heat capacity, and the Raman response function. For the Raman case, we investigate within this framework the polarization-dependence of the electronic (pair-breaking) Raman response for the recently discovered non-centrosymmetric superconductors at zero temperature. Possible applications include the systems CePt$_3$Si and Li$_2$Pd$_x$Pt$_{3-x}$B, which reflect the two important classes of the involved spin-orbit coupling. We provide analytical expressions for the Raman vertices for these two classes and calculate the polarization-dependence of the electronic spectra. We predict a two-peak structure and different power laws with respect to the unknown relative magnitude of the singlet and triplet contributions to the superconducting order parameter, revealing a large variety of characteristic fingerprints of the underlying condensate.



قيم البحث

اقرأ أيضاً

We discuss a novel physical mechanism which gives rise to a giant magnetoconductivity in non-centrosymmetric superconducting films. This mechanism is caused by a combination of spin-orbit interaction and inversion symmetry breaking in the system, and arises in the presence of an in-plane magnetic field ${bf H}_|$. It produces a contribution to the conductivity, which displays a strong dependence on the angle between the electric field ${bf E}$ and ${bf H}_|$, and is proportional to the inelastic relaxation time of quasiparticles. Since in typical situations the latter is much larger than the elastic one this contribution can be much larger than the conventional conductivity thus leading to giant microwave absorption.
293 - N. Kimura , I. Bonalde 2012
In this chapter we discuss the physical properties of a particular family of non-centrosymmetric superconductors belonging to the class heavy-fermion compounds. This group includes the ferromagnet UIr and the antiferromagnets CeRhSi3, CeIrSi3, CeCoGe 3, CeIrGe3 and CePt3Si, of which all but CePt3Si become superconducting only under pressure. Each of these superconductors has intriguing and interesting properties. We first analyze CePt3Si, then review CeRhSi3, CeIrSi3, CeCoGe3 and CeIrGe3, which are very similar to each other in their magnetic and electrical properties, and finally discuss UIr. For each material we discuss the crystal structure, magnetic order, occurrence of superconductivity, phase diagram, characteristic parameters, superconducting properties and pairing states. We present an overview of the similarities and differences between all these six compounds at the end.
We formulate a theory for the polarization-dependence of the electronic (pair-breaking) Raman response for the recently discovered non-centrosymmetric superconductors in the clean limit at zero temperature. Possible applications include the systems C ePt$_3$Si and Li$_2$Pd$_x$Pt$_{3-x}$B which reflect the two important classes of the involved spin-orbit coupling. We provide analytical expressions for the Raman vertices for these two classes and calculate the polarization dependence of the electronic spectra. We predict a two-peak structure and different power laws with respect to the unknown relative magnitude of the singlet and triplet contributions to the superconducting order parameter, revealing a large variety of characteristic fingerprints of the underlying condensate.
We investigate the collision-limited electronic Raman response and the attenuation of ultrasound in spin-singlet d-wave superconductors at low temperatures. The dominating elastic collisions are treated within a t-matrix approximation, which combines the description of weak (Born) and strong (unitary) impurity scattering. In the long wavelength limit a two-fluid description of both response and transport emerges. Collisions are here seen to exclusively dominate the relaxational dynamics of the (Bogoliubov) quasiparticle system and the analysis allows for a clear connection of response and transport phenomena. When applied to quasi-2-d superconductors like the cuprates, it turns out that the transport parameter associated with the Raman scattering intensity for B1g and B2g photon polarization is closely related to the corresponding components of the shear viscosity tensor, which dominates the attenuation of ultrasound. At low temperatures we present analytic solutions of the transport equations, resulting in a non-power-law behavior of the transport parameters on temperature.
The paramagnetic properties in non-centrosymmetric superconductors with and without antiferromagnetic (AFM) order are investigated with focus on the heavy Fermion superconductors, CePt_3Si, CeRhSi_3 and CeIrSi_3. First, we investigate the spin suscep tibility in the linear response regime and elucidate the role of AFM order. The spin susceptibility at T=0 is independent of the pairing symmetry and increases in the AFM state. Second, the non-linear response to the magnetic field are investigated on the basis of an effective model for CePt_3Si which may be also applicable to CeRhSi_3 and CeIrSi_3. The role of antisymmetric spin-orbit coupling (ASOC), helical superconductivity, anisotropic Fermi surfaces and AFM order are examined in the dominantly s-, p- and d-wave states. We emphasize the qualitatively important role of the mixing of superconducting (SC) order parameters in the p-wave state which enhances the spin susceptibility and suppresses paramagnetic depairing effect in a significant way. Therefore, the dominantly p-wave superconductivity admixed with the s-wave order parameter is consistent with the paramagnetic properties of CePt_3Si at ambient pressure. We propose some experiments which can elucidate the novel pairing states in CePt_3Si as well as CeRhSi_3 and CeIrSi_3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا