ترغب بنشر مسار تعليمي؟ اضغط هنا

Radio Halos From Simulations And Hadronic Models II: The Scaling Relations of Radio Halos

442   0   0.0 ( 0 )
 نشر من قبل Julius Donnert
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use results from a constrained, cosmological MHD simulation of the Local Universe to predict radio halos and their evolution for a volume limited set of galaxy clusters and compare to current observations. The simulated magnetic field inside the clusters is a result of turbulent amplification within them, with the magnetic seed originating from star-burst driven, galactic outflows. We evaluate three models, where we choose different normalizations for the Cosmic Ray proton population within clusters. Similar to our previous analysis of the Coma cluster (Donnert et al. 2010), the radial profile and the morphological properties of observed radio halos can not be reproduced, even with a radially increasing energy fraction within the cosmic ray proton population. Scaling relations between X-ray luminosity and radio power can be reproduced by all models, however all models fail in the prediction of clusters with no radio emission. Also the evolutionary tracks of our largest clusters in all models fail to reproduce the observed bi-modality in radio luminosity. This provides additional evidence that the framework of hadronic, secondary models is disfavored to reproduce the large scale diffuse radio emission of galaxy clusters. We also provide predictions for the unavoidable emission of $gamma$-rays from the hadronic models for the full cluster set. None of such secondary models is yet excluded by the observed limits in $gamma$-ray emission, emphasizing that large scale diffuse radio emission is a powerful tool to constrain the amount of cosmic ray protons in galaxy clusters.



قيم البحث

اقرأ أيضاً

187 - Fabio Zandanel 2013
The underlying physics of giant and mini radio halos in galaxy clusters is still an open question. We find that mini halos (such as in Perseus and Ophiuchus) can be explained by radio-emitting electrons that are generated in hadronic cosmic ray (CR) interactions with protons of the intracluster medium. By contrast, the hadronic model either fails to explain the extended emission of giant radio halos (as in Coma at low frequencies) or would require a flat CR profile, which can be realized through outward streaming and diffusion of CRs (in Coma and A2163 at 1.4 GHz). We suggest that a second, leptonic component could be responsible for the missing flux in the outer parts of giant halos within a new hybrid scenario and we describe its possible observational consequences. To study the hadronic emission component of the radio halo population statistically, we use a cosmological mock galaxy cluster catalog built from the MultiDark simulation. Because of the properties of CR streaming and the different scalings of the X-ray luminosity (L_X) and the Sunyaev-Zeldovich flux (Y) with gas density, our model can simultaneously reproduce the observed bimodality of radio-loud and radio-quiet clusters at the same L_X as well as the unimodal distribution of radio-halo luminosity versus Y; thereby suggesting a physical solution to this apparent contradiction. We predict radio halo emission down to the mass scale of galaxy groups, which highlights the unique prospects for low-frequency radio surveys (such as the LOFAR Tier 1 survey) to increase the number of detected radio halos by at least an order of magnitude.
139 - Z.S. Yuan 2015
Diffuse radio emission in galaxy clusters is known to be related to cluster mass and cluster dynamical state. We collect the observed fluxes of radio halos, relics, and mini-halos for a sample of galaxy clusters from the literature, and calculate the ir radio powers. We then obtain the values of cluster mass or mass proxies from previous observations, and also obtain the various dynamical parameters of these galaxy clusters from optical and X-ray data. The radio powers of relics, halos, and mini-halos are correlated with the cluster masses or mass proxies, as found by previous authors, with the correlations concerning giant radio halos being, in general, the strongest ones. We found that the inclusion of dynamical parameters as the third dimension can significantly reduce the data scatter for the scaling relations, especially for radio halos. We therefore conclude that the substructures in X-ray images of galaxy clusters and the irregular distributions of optical brightness of member galaxies can be used to quantitatively characterize the shock waves and turbulence in the intracluster medium responsible for re-accelerating particles to generate the observed diffuse radio emission. The power of radio halos and relics is correlated with cluster mass proxies and dynamical parameters in the form of a fundamental plane.
The joint likelihood of observable cluster signals reflects the astrophysical evolution of the coupled baryonic and dark matter components in massive halos, and its knowledge will enhance cosmological parameter constraints in the coming era of large, multi-wavelength cluster surveys. We present a computational study of intrinsic covariance in cluster properties using halo populations derived from Millennium Gas Simulations (MGS). The MGS are re-simulations of the original 500 Mpc/h Millennium Simulation performed with gas dynamics under two different physical treatments: shock heating driven by gravity only (GO) and a second treatment with cooling and preheating (PH). We examine relationships among structural properties and observable X-ray and Sunyaev-Zeldovich (SZ) signals for samples of thousands of halos with M_200 > 5 times 10^{13} Msun/h and z < 2. While the X-ray scaling behavior of PH model halos at low-redshift offers a good match to local clusters, the model exhibits non-standard features testable with larger surveys, including weakly running slopes in hot gas observable--mass relations and ~10% departures from self-similar redshift evolution for 10^14 Msun/h halos at redshift z ~ 1. We find that the form of the joint likelihood of signal pairs is generally well-described by a multivariate, log-normal distribution, especially in the PH case which exhibits less halo substructure than the GO model. At fixed mass and epoch, joint deviations of signal pairs display mainly positive correlations, especially the thermal SZ effect paired with either hot gas fraction (r=0.88/0.69 for PH/GO at z=0) or X-ray temperature (r=0.62/0.83). We discuss halo mass selection by signal pairs, and find a minimum mass scatter of 4% in the PH model by combining thermal SZ and gas fraction measurements.
500 - J.M.F. Donnert 2013
We review models for giant radio halos in clusters of galaxies, with a focus on numerical and theoretical work. After summarising the most important observations of these objects, we present an introduction to the theoretical aspects of hadronic mode ls. We compare these models with observations using simulations and find severe problems for hadronic models. We give a short introduction to reacceleration models and show results from the first simulation of CRe reaccel- eration in cluster mergers. We find that in-line with previous theoretical work, reacceleration models are able to elegantly explain main observables of giant radio halos.
A fraction of galaxy clusters host diffuse radio sources called radio halos, radio relics and mini-halos. We present the sample and first results from the Extended GMRT Radio Halo Survey (EGRHS)- an extension of the GMRT Radio Halo Survey (GRHS, Vent uri et al. 2007, 2008). It is a systematic radio survey of galaxy clusters selected from the REFLEX and eBCS X-ray catalogs . Analysis of GMRT data at 610/ 235/ 325 MHz on 12 galaxy clusters are presented. We report the detection of a newly discovered mini-halo in the cluster RXJ1532.9+3021 at 610 MHz. A small scale relic (~200 kpc) is suspected in the cluster Z348. We do not detect cluster-scale diffuse emission in 11 clusters. Robust upper limits on the detection of radio halo of size of 1 Mpc are determined. We also present upper limits on the detections of mini-halos in a sub-sample of cool-core clusters. The upper limits for radio halos and mini-halos are plotted in the radio power- X-ray luminosity plane and the correlations are discussed. Diffuse extended emission, not related to the target clusters, but detected as by-products in the sensitive images of two of the cluster fields (A689 and RXJ0439.0+0715) are reported. Based on the information about the presence of radio halos (or upper limits), available on 48 clusters out of the total sample of 67 clusters (EGRHS+GRHS), we find that ~23% of the clusters host radio halos. The radio halo fraction rises to ~31%, when only the clusters with X-ray luminosities >8x10^44 erg/s are considered. Mini-halos are found in ~50 % of cool-core clusters. A qualitative examination of the X-ray images of the clusters with no diffuse radio emission indicates that a majority of these clusters do not show extreme dynamical disturbances and supports the idea that mergers play an important role in the generation of radio halos/relics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا