ترغب بنشر مسار تعليمي؟ اضغط هنا

The Cosmically Depressed: Life, Sociology and Identity of Voids

36   0   0.0 ( 0 )
 نشر من قبل Rien van de Weygaert
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We review and discuss aspects of Cosmic Voids that form the background for our Void Galaxy Survey (see accompanying paper by Stanonik et al.). Following a sketch of the general characteristics of void formation and evolution, we describe the influence of the environment on their development and structure and the characteristic hierarchical buildup of the cosmic void population. In order to be able to study the resulting tenuous void substructure and the galaxies populating the interior of voids, we subsequently set out to describe our parameter free tessellation-based watershed void finding technique. It allows us to trace the outline, shape and size of voids in galaxy redshift surveys. The application of this technique enables us to find galaxies in the deepest troughs of the cosmic galaxy distribution, and has formed the basis of our void galaxy program.

قيم البحث

اقرأ أيضاً

We analyse the clustering of cosmic voids using a numerical simulation and the main galaxy sample from the Sloan Digital Sky Survey. We take into account the classification of voids into two types that resemble different evolutionary modes: those wit h a rising integrated density profile (void-in-void mode, or R-type) and voids with shells (void-in-cloud mode, or S-type). The results show that voids of the same type have stronger clustering than the full sample. We use the correlation analysis to define void clumps, associations with at least two voids separated by a distance of at most the mean void separation. In order to study the spatial configuration of void clumps, we compute the minimal spanning tree and analyse their multiplicity, maximum length and elongation parameter. We further study the dynamics of the smaller sphere that encloses all the voids in each clump. Although the global densities of void clumps are different according to their member-void types, the bulk motions of these spheres are remarkably lower than those of randomly placed spheres with the same radii distribution. In addition, the coherence of pairwise void motions does not strongly depend on whether voids belong to the same clump. Void clumps are useful to analyse the large-scale flows around voids, since voids embedded in large underdense regions are mostly in the void-in-void regime, were the expansion of the larger region produces the separation of voids. Similarly, voids around overdense regions form clumps that are in collapse, as reflected in the relative velocities of voids that are mostly approaching.
The Universe is mostly composed of large and relatively empty domains known as cosmic voids, whereas its matter content is predominantly distributed along their boundaries. The remaining material inside them, either dark or luminous matter, is attrac ted to these boundaries and causes voids to expand faster and to grow emptier over time. Using the distribution of galaxies centered on voids identified in the Sloan Digital Sky Survey and adopting minimal assumptions on the statistical motion of these galaxies, we constrain the average matter content $Omega_mathrm{m}=0.281pm0.031$ in the Universe today, as well as the linear growth rate of structure $f/b=0.417pm0.089$ at median redshift $bar{z}=0.57$, where $b$ is the galaxy bias ($68%$ C.L.). These values originate from a percent-level measurement of the anisotropic distortion in the void-galaxy cross-correlation function, $varepsilon = 1.003pm0.012$, and are robust to consistency tests with bootstraps of the data and simulated mock catalogs within an additional systematic uncertainty of half that size. They surpass (and are complementary to) existing constraints by unlocking cosmological information on smaller scales through an accurate model of nonlinear clustering and dynamics in void environments. As such, our analysis furnishes a powerful probe of deviations from Einsteins general relativity in the low-density regime which has largely remained untested so far. We find no evidence for such deviations in the data at hand.
To study the impact of sparsity and galaxy bias on void statistics, we use a single large-volume, high-resolution N-body simulation to compare voids in multiple levels of subsampled dark matter, halo populations, and mock galaxies from a Halo Occupat ion Distribution model tuned to different galaxy survey densities. We focus our comparison on three key observational statistics: number functions, ellipticity distributions, and radial density profiles. We use the hierarchical tree structure of voids to interpret the impacts of sampling density and galaxy bias, and theoretical and empirical functions to describe the statistics in all our sample populations. We are able to make simple adjustments to theoretical expectations to offer prescriptions for translating from analytics to the void properties measured in realistic observations. We find that sampling density has a much larger effect on void sizes than galaxy bias. At lower tracer density, small voids disappear and the remaining voids are larger, more spherical, and have slightly steeper profiles. When a proper lower mass threshold is chosen, voids in halo distributions largely mimic those found in galaxy populations, except for ellipticities, where galaxy bias leads to higher values. We use the void density profile of Hamaus et al. (2014) to show that voids follow a self-similar and universal trend, allowing simple translations between voids studied in dark matter and voids identified in galaxy surveys. We have added the mock void catalogs used in this work to the Public Cosmic Void Catalog at http://www.cosmicvoids.net.
Gravitational redshift as a relativistic effect in cosmological objects is investigated. Possible signatures of the gravitational redshift in measurements of satellite galaxies in clusters of galaxies, intracluster gas, as well as galaxies associated with voids are investigated by developing simple theoretical models. In the analysis of the gravitational redshift of satellite galaxies, we develop a very simple analytic model for satellite galaxies virialised in halos, which enables us to evaluate the signals depending on the properties of the halo occupation distribution of galaxies. We obtain results consistent with recent previous results, though our results are restricted to the satellite galaxies inside the virial radius. In the analysis of intracluster gas, we develop a simple analytic model including the effect of random motions of gases, which are assumed to generate nonthermal pressure. We demonstrate a possible contribution of the random motions of gases to the gravitational redshift. We also investigate a possible signature of the gravitational redshift in measurements of galaxies associated with voids, for the first time as far as we know, by utilising a simple analytic model. We show that the second-order Hubble term, which appears in the expansion of the scale factor around the centre of a void, may make a significant contribution depending on the way the galaxy samples are analysed.
65 - Andras Kovacs 2017
The integrated Sachs-Wolfe imprint of extreme structures in the cosmic web probes the dynamical nature of dark energy. Looking through typical cosmic voids, no anomalous signal has been reported. On the contrary, supervoids, associated with large-sca le fluctuations in the gravitational potential, have shown potentially disturbing excess signals. In this study, we used the Jubilee ISW simulation to demonstrate how the stacked signal depends on the void definition. We found that large underdensities, with at least $approx5$ merged sub-voids, show a peculiar ISW imprint shape with central cold spots and surrounding hot rings, offering a natural way to define supervoids in the cosmic web. We then inspected the real-world BOSS DR12 data using the simulated imprints as templates. The imprinted profile of BOSS supervoids appears to be more compact than in simulations, requiring an extra $alpha approx 0.7$ re-scaling of filter sizes. The data reveals an excess ISW-like signal with $A_{rm ISW}approx9$ amplitude at the $approx2.5sigma$ significance level, unlike previous studies that used isolated voids and reported good consistency with $A_{rm ISW}=1$. The tension with the Jubilee-based $Lambda$CDM predictions is $sim 2sigma$, in consistency with independent analyses of supervoids in Dark Energy Survey data. We show that such a very large enhancement of the $A_{rm ISW}$ parameter hints at a possible causal relation between the CMB Cold Spot and the Eridanus supervoid. The origin of these findings remains unclear.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا