ﻻ يوجد ملخص باللغة العربية
For modular Lie superalgebras, new notions are introduced: Divided power homology and divided power cohomology. For illustration, we give presentations (in terms of analogs of Chevalley generators) of finite dimensional Lie (super)algebras with indecomposable Cartan matrix in characteristic 2 (and in other characteristics for completeness of the picture). We correct the currently available in the literature notions of Chevalley generators and Cartan matrix in the modular and super cases, and an auxiliary notion of the Dynkin diagram. In characteristic 2, the defining relations of simple classical Lie algebras of the A, D, E types are not only Serre ones; these non-Serre relations are same for Lie superalgebras with the same Cartan matrix and any distribution of parities of the generators. Presentations of simple orthogonal Lie algebras having no Cartan matrix are also given..
Finite dimensional modular Lie superalgebras over algebraically closed fields with indecomposable Cartan matrices are classified under some technical, most probably inessential, hypotheses. If the Cartan matrix is invertible, the corresponding Lie su
For the exceptional finite-dimensional modular Lie superalgebras $mathfrak{g}(A)$ with indecomposable Cartan matrix $A$, and their simple subquotients, we computed non-isomorphic Lie superalgebras constituting the homologies of the odd elements with
A way to construct (conjecturally all) simple finite dimensional modular Lie (super)algebras over algebraically closed fields of characteristic not 2 is offered. In characteristic 2, the method is supposed to give only simple Lie (super)algebras grad
For each of the exceptional Lie superalgebras with indecomposable Cartan matrix, we give the explicit list of its roots of and the corresponding Chevalley basis for one of the inequivalent Cartan matrices, the one corresponding to the greatest number
Over algebraically closed fields of characteristic p>2, prolongations of the simple finite dimensional Lie algebras and Lie superalgebras with Cartan matrix are studied for certain simplest gradings of these algebras. Several new simple Lie superalge