ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark Matter Spin-Dependent Limits for WIMP Interactions on 19-F by PICASSO

125   0   0.0 ( 0 )
 نشر من قبل Viktor Zacek
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The PICASSO experiment at SNOLAB reports new results for spin-dependent WIMP interactions on $^{19}$F using the superheated droplet technique. A new generation of detectors and new features which enable background discrimination via the rejection of non-particle induced events are described. First results are presented for a subset of two detectors with target masses of $^{19}$F of 65 g and 69 g respectively and a total exposure of 13.75 $pm$ 0.48 kgd. No dark matter signal was found and for WIMP masses around 24 GeV/c$^2$ new limits have been obtained on the spin-dependent cross section on $^{19}$F of $sigma_F$ = 13.9 pb (90% C.L.) which can be converted into cross section limits on protons and neutrons of $sigma_p$ = 0.16 pb and $sigma_n$ = 2.60 pb respectively (90% C.L). The obtained limits on protons restrict recent interpretations of the DAMA/LIBRA annual modulations in terms of spin-dependent interactions.



قيم البحث

اقرأ أيضاً

Recent results from the PICASSO dark matter search experiment at SNOLAB are reported. These results were obtained using a subset of 10 detectors with a total target mass of 0.72 kg of 19F and an exposure of 114 kgd. The low backgrounds in PICASSO all ow recoil energy thresholds as low as 1.7 keV to be obtained which results in an increased sensitivity to interactions from Weakly Interacting Massive Particles (WIMPs) with masses below 10 GeV/c^2. No dark matter signal was found. Best exclusion limits in the spin dependent sector were obtained for WIMP masses of 20 GeV/c^2 with a cross section on protons of sigma_p^SD = 0.032 pb (90% C.L.). In the spin independent sector close to the low mass region of 7 GeV/c2 favoured by CoGeNT and DAMA/LIBRA, cross sections larger than sigma_p^SI = 1.41x10^-4 pb (90% C.L.) are excluded.
We present PandaX-II constraints on candidate WIMP-nucleon effective interactions involving the nucleon or WIMP spin, including, in addition to standard axial spin-dependent (SD) scattering, various couplings among vector and axial currents, magnetic and electric dipole moments, and tensor interactions. The data set corresponding to a total exposure of 54-ton-days is reanalyzed to determine constraints as a function of the WIMP mass and isospin coupling. We obtain WIMP-nucleon cross section bounds of $rm 1.6 times 10^{-41} cm^2$ and $rm 9.0 times 10^{-42} cm^2$ ($90%$ c.l.) for neutron-only SD and tensor coupling, respectively, for a mass $M_mathrm{WIMP} sim {rm 40~GeV}/c^2$. The SD limits are the best currently available for $M_mathrm{WIMP} > {rm 40~GeV}/c^2$. We show that PandaX-II has reached a sensitivity sufficient to probe a variety of other candidate spin-dependent interactions at the weak scale.
The SIMPLE project uses superheated C2ClF5 liquid detectors to search for particle dark matter candidates. We report the results of the first stage exposure (14.1 kgd) of its latest two-stage, Phase II run, with 15 superheated droplet detectors of to tal active mass 0.208 kg. In combination with the results of the neutron-spin sensitive XENON10 experiment, these results yield a limit of |a_p| < 0.32, |a_n| < 0.17 for M_W = 50 GeV/c2 on the model-independent, spin-dependent sector of weakly interacting massive particle (WIMP)-nucleus interactions, and together yield a 50% reduction in the previously allowed region of the phase space. The result provides a contour minimum of {sigma}_p ~ 2.8 x 10-2 pb at M_W = 45 GeV/c2, constituting the most restrictive direct detection limit to date against a spin-dependent WIMP-proton coupling. In the spin-independent sector, the result is seen to offer the prospect of contributing to the question of light mass WIMPs with an improvement in the current understanding of its nucleation efficiency.
Detectors with low thresholds for electron recoil open a new window to direct searches of sub-GeV dark matter (DM) candidates. In the past decade, many strong limits on DM-electron interactions have been set, but most on the one which is spin-indepen dent (SI) of both dark matter and electron spins. In this work, we study DM-atom scattering through a spin-dependent (SD) interaction at leading order (LO), using well-benchmarked, state-of-the-art atomic many-body calculations. Exclusion limits on the SD DM-electron cross section are derived with data taken from experiments with xenon and germanium detectors at leading sensitivities. In the DM mass range of 0.1 - 10 GeV, the best limits set by the XENON1T experiment: $sigma_e^{textrm{(SD)}}<10^{-41}-10^{-40},textrm{cm}^2$ are comparable to the ones drawn on DM-neutron and DM-proton at slightly bigger DM masses. The detectors responses to the LO SD and SI interactions are analyzed. In nonrelativistic limit, a constant ratio between them leads to an indistinguishability of the SD and SI recoil energy spectra. Relativistic calculations however show the scaling starts to break down at a few hundreds of eV, where spin-orbit effects become sizable. We discuss the prospects of disentangling the SI and SD components in DM-electron interactions via spectral shape measurements, as well as having spin-sensitive experimental signatures without SI background.
We report new limits on spin-independent WIMP-nucleon interaction cross-section using 39.5 kg-days of data taken with a p-type point-contact germanium detector of 840 g fiducial mass at the Kuo-Sheng Reactor Neutrino Laboratory. Crucial to this study is the understanding of the selection procedures and, in particular, the bulk-surface events differentiation at the sub-keV range. The signal-retaining and background-rejecting efficiencies were measured with calibration gamma sources and a novel n-type point-contact germanium detector. Part of the parameter space in cross-section versus WIMP-mass implied by various experiments is probed and excluded.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا