ترغب بنشر مسار تعليمي؟ اضغط هنا

The supergiant fast X-ray transient IGRJ18483-0311 in quiescence: XMM-Newton, Swift, and Chandra observations

136   0   0.0 ( 0 )
 نشر من قبل Enrico Bozzo
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

IGR J18483-0311 was discovered with INTEGRAL in 2003 and later classified as a supergiant fast X-ray transient. It was observed in outburst many times, but its quiescent state is still poorly known. Here we present the results of XMM-Newton, Swift, and Chandra observations of IGRJ18483-0311. These data improved the X-ray position of the source, and provided new information on the timing and spectral properties of IGR J18483-0311 in quiescence. We report the detection of pulsations in the quiescent X-ray emission of this source, and give for the first time a measurement of the spin-period derivative of this source. In IGRJ18483-0311 the measured spin-period derivative of -(1.3+-0.3)x10^(-9) s/s likely results from light travel time effects in the binary. We compare the most recent observational results of IGRJ18483-0311 and SAXJ1818.6-1703, the two supergiant fast X-ray transients for which a similar orbital period has been measured.



قيم البحث

اقرأ أيضاً

240 - P. Romano , L. Ducci (3 2009
IGR J18483-0311 is an X-ray pulsar with transient X-ray activity, belonging to the new class of High Mass X-ray Binaries called Supergiant Fast X-ray Transients. This system is one of the two members of this class, together with IGR J11215-5952, wher e both the orbital (18.52d) and spin period (21s) are known. We report on the first complete monitoring of the X-ray activity along an entire orbital period of a Supergiant Fast X-ray Transient. These Swift observations, lasting 28d, cover more than one entire orbital phase consecutively. They are a unique data-set, which allows us to constrain the different mechanisms proposed to explain the nature of this new class of X-ray transients. We applied the new clumpy wind model for blue supergiants developed by Ducci et al. (2009), to the observed X-ray light curve. Assuming an eccentricity of e=0.4, the X-ray emission from this source can be explained in terms of the accretion from a spherically symmetric clumpy wind, composed of clumps with different masses, ranging from 10^{18}g to 5x 10^{21}g.
We present the results of combined INTEGRAL and XMM-Newton observations of the supergiant fast X-ray transient (SFXT) IGR J17354$-$3255. Three XMM-Newton observations of lengths 33.4 ks, 32.5 ks and 21.9 ks were undertaken, the first an initial point ing to identify the correct source in the field of view and the latter two performed around periastron. Simultaneous INTEGRAL observations across $sim66%$ of the orbital cycle were analysed but the source was neither detected by IBIS/ISGRI nor by JEM-X. The XMM-Newton light curves display a range of moderately bright X-ray activity but there are no particularly strong flares or outbursts in any of the three observations. We show that the spectral shape measured by XMM-Newton can be fitted by a consistent model throughout the observation, suggesting that the observed flux variations are driven by obscuration from a wind of varying density rather than changes in accretion mode. The simultaneous INTEGRAL data rule out simple extrapolation of the simple powerlaw model beyond the XMM-Newton energy range.
127 - L.Sidoli 2011
We report on a 40 ks long, uninterrupted X-ray observation of the candidate supergiant fast X-ray transient (SFXT) IGRJ16418-4532 performed with XMM-Newton on February 23, 2011. This high mass X-ray binary lies in the direction of the Norma arm, at a n estimated distance of 13 kpc. During the observation, the source showed strong variability exceeding two orders of magnitudes, never observed before from this source. Its X-ray flux varied in the range from 0.1 counts/s to about 15 counts/s, with several bright flares of different durations (from a few hundreds to a few thousands seconds) and sometimes with a quasi-periodic behavior. This finding supports the previous suggestion that IGRJ16418-4532 is a member of the SFXTs class. In our new observation we measured a pulse period of 1212+/-6 s, thus confirming that this binary contains a slowly rotating neutron star. During the periods of low luminosity the source spectrum is softer and more absorbed than during the flares. A soft excess is present below 2 keV in the cumulative flares spectrum, possibly due to ionized wind material at a distance similar to the neutron star accretion radius. The kind of X-ray variability displayed by IGRJ16418-4532, its dynamic range and time scale,together with the sporadic presence of quasi-periodic flaring, all are suggestive of a transitional accretion regime between pure wind accretion and full Roche lobe overflow. We discuss here for the first time this hypothesis to explain the behavior of IGRJ16418-4532 and, possibly, of other SFXTs with short orbital periods.
218 - P. Kretschmar 2004
We present XMM-Newton observations of the recurrent Be/X-ray transient A0538-66, situated in the Large Magellanic Cloud, in the quiescent state. Despite a very low luminosity state of (5-8)E33 ergs/s in the range 0.3-10 keV, the source is clearly det ected up to ~8 keV. and can be fitted using either a power law with photon index alpha=1.9+-0.3 or a bremsstrahlung spectrum with kT=3.9+3.9-1.7 keV. The spectral analysis confirms that the off-state spectrum is hard without requiring any soft component, contrary to the majority of neutron stars observed in quiescence up to now.
246 - L. Ducci 2013
IGR J18483-0311 is a supergiant fast X-ray transient whose compact object is located in a wide (18.5 d) and eccentric (e~0.4) orbit, which shows sporadic outbursts that reach X-ray luminosities of ~1e36 erg/s. We investigated the timing properties of IGR J18483-0311 and studied the spectra during bright outbursts by fitting physical models based on thermal and bulk Comptonization processes for accreting compact objects. We analysed archival INTEGRAL data collected in the period 2003-2010, focusing on the observations with IGR J18483-0311 in outburst. We searched for pulsations in the INTEGRAL light curves of each outburst. We took advantage of the broadband observing capability of INTEGRAL for the spectral analysis. We observed 15 outbursts, seven of which we report here for the first time. This data analysis almost doubles the statistics of flares of this binary system detected by INTEGRAL. A refined timing analysis did not reveal a significant periodicity in the INTEGRAL observation where a ~21s pulsation was previously detected. Neither did we find evidence for pulsations in the X-ray light curve of an archival XMM-Newton observation of IGR J18483-0311. In the light of these results the nature of the compact object in IGR J18483-0311 is unclear. The broadband X-ray spectrum of IGR J18483-0311 in outburst is well fitted by a thermal and bulk Comptonization model of blackbody seed photons by the infalling material in the accretion column of a neutron star. We also obtained a new measurement of the orbital period using the Swift/BAT light curve.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا