ترغب بنشر مسار تعليمي؟ اضغط هنا

$^{63/65}$Cu- and $^{35/37}$Cl-NMR Studies of Triplet Localization in the Quantum Spin System NH$_4$CuCl$_3$

59   0   0.0 ( 0 )
 نشر من قبل Takayuki Goto
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

$^{63/65}$Cu- and $^{35/37}$Cl-NMR experiments were performed to investigate triplet localization in the $S=1/2$ dimer compound NH$_4$CuCl$_3$, which shows magnetization plateaus at one-quarter and three-quarters of the saturation magnetization. In $^{63/65}$Cu-NMR experiments, signal from only the singlet Cu site was observed, because that from the triplet Cu site was invisible due to the strong spin fluctuation of onsite 3$d$-spins. We found that the temperature dependence of the shift of $^{63/65}$Cu-NMR spectra at the singlet Cu site deviated from that of macroscopic magnetization below T=6 K. This deviation is interpreted as the triplet localization in this system. From the $^{35/37}$Cl-NMR experiments at the 1/4-plateau phase, we found the two different temperature dependences of Cl-shift, namely the temperature dependence of one deviates below T=6 K from that of the macroscopic magnetization as observed in the $^{63/65}$Cu-NMR experiments, whereas the other corresponds well with that of the macroscopic magnetization in the entire experimental temperature region. We interpreted these dependences as reflecting the transferred hyperfine field at the Cl site located at a singlet site and at a triplet site, respectively. This result also indicates that the triplets are localized at low temperatures. $^{63/65}$Cu-NMR experiments performed at high magnetic fields between the one-quarter and three-quarters magnetization plateaus have revealed that the two differently oriented dimers in the unit cell are equally occupied by triplets, the fact of which limits the theoretical model on the periodic structure of the localized triplets.


قيم البحث

اقرأ أيضاً

The presence of charge and spin stripe order in the La2CuO4-based family of superconductors continues to lead to new insight on the unusual ground state properties of high Tc cuprates. Soon after the discovery of charge stripe order at T(charge)=65K in Nd3+ co-doped LSCO ($T_{c}simeq6$~K) [Tranquada et al., Nature {bf 375} (1995) 561], Hunt et al. demonstrated that La$_{1.48}$Nd$_{0.4}$Sr$_{0.12}$CuO$_4$ and superconducting LSCO with x~1/8 (Tc ~ 30K) share nearly identical NMR anomalies near $T_{charge}$ of the former [Phys. Rev. Lett. {bf 82} (1999) 4300]. Their inevitable conclusion that LSCO also undergoes charge order at a comparable temperature became controversial, because diffraction measurements at the time were unable to detect Bragg peaks associated with charge order. Recent advances in x-ray diffraction techniques finally led to definitive confirmations of the charge order Bragg peaks in LSCO with an onset at as high as T(charge)=80K. Meanwhile, improved instrumental technology has enabled routine NMR measurements that were not feasible two decades ago. Motivated by these new developments, we revisit the charge order transition of a LSCO single crystal based on 63Cu NMR techniques. We demonstrate that 63Cu NMR properties of the nuclear spin $I_{z}$ = -1/2 to +1/2 central transition below T(charge) exhibit unprecedentedly strong dependence on the measurement time scale set by the NMR pulse separation time $tau$; a new kind of anomalous, very broad wing-like 63Cu NMR signals gradually emerge below T(charge) only for extremely short $tau lesssim 4~mu$s, while the spectral weight of the normal NMR signals is progressively wiped out. The NMR linewidth and relaxation rates depend strongly on $tau$ below T(charge), and their enhancement in the charge ordered state indicates that charge order turns on strong but inhomogeneous growth of Cu spin-spin correlations.
220 - T. Adachi , K. Kanada , T. Saito 2007
Spin-lattice relaxation rate $T_1^{-1}$ of $^1$H-NMR has been measured in (CH$_3$)$_2$CHNH$_3$Cu(Cl$_x$Br$_{1-x}$)$_3$ with $x=0.88$, which has been reported to be gapped system with singlet ground state from the previous macroscopic magnetization an d specific heat measurements, in order to investigate the bond randomness effect microscopically in the gapped composite Haldane system (CH$_3$)$_2$CHNH$_3$CuCl$_3$. It was found that the spin-lattice relaxation rate $T_1^{-1}$ in the present system includes both fast and slow relaxation parts indicative of the gapless magnetic ground state and the gapped singlet ground state, respectively. We discuss the obtained results with the previous macroscopic magnetization and specific heat measurements together with the microscopic $mu$SR experiments.
We report $^{77}$Se and $^{63}$Cu nuclear magnetic resonance (NMR) investigation on the charge-density-wave (CDW) superconductor Cu$_x$TiSe$_2$ ($x=0.05$ and 0.07). At high magnetic fields where superconductivity is suppressed, the temperature depend ence of $^{77}$Se and $^{63}$Cu spin-lattice relaxation rates 1/T_{1}$ follow a linear relation. The slope of $^{77}1/T_{1}$ vs emph{T} increases with the Cu doping. This can be described by a modified Korringa relation which suggests the significance of electronic correlations and the Se 4emph{p}- and Ti 3emph{d}-band contribution to the density of states at the Fermi level in the studied compounds.
107 - A. Oosawa , T. Suzuki , K. Kanada 2009
The spin-lattice relaxation rate $T_1^{-1}$ of $^1$H-NMR has been measured in (CH$_3$)$_2$CHNH$_3$Cu(Cl$_x$Br$_{1-x}$)$_3$ with $x=0$ and 0.35, in order to investigate the microscopic magnetism of systems. Previous macroscopic magnetization and speci fic heat measurements suggested that these two exist in a singlet-dimer phase. The temperature dependence of $T_1^{-1}$ in an $x=0$ system decreased exponentially toward zero, indicating microscopic evidence of the gapped singlet ground state, which is consistent with the macroscopic experiments. At the same time, in the $x=0.35$ system, $T_1^{-1}$ showed a sharp peak structure at around 7.5 K though no splitting of $^1$H-NMR spectra indicative of the magnetic ordering was observed. We discuss the observed sharp peak structure in the $x=0.35$ system with the soft mode toward the exotic magnetic ground state suggested by the recent $mu$SR experiments.
99 - Hui Shao , Wenan Guo , 2015
We study the mechanism of decay of a topological (winding-number) excitation due to finite-size effects in a two-dimensional valence-bond solid state, realized in an $S=1/2$ spin model ($J$-$Q$ model) and studied using projector Monte Carlo simulatio ns in the valence bond basis. A topological excitation with winding number $|W|>0$ contains domain walls, which are unstable due to the emergence of long valence bonds in the wave function, unlike in effective descriptions with the quantum dimer model. We find that the life time of the winding number in imaginary time diverges as a power of the system length $L$. The energy can be computed within this time (i.e., it converges toward a quasi-eigenvalue before the winding number decays) and agrees for large $L$ with the domain-wall energy computed in an open lattice with boundary modifications enforcing a domain wall. Constructing a simplified two-state model and using the imaginary-time behavior from the simulations as input, we find that the real-time decay rate out of the initial winding sector is exponentially small in $L$. Thus, the winding number rapidly becomes a well-defined conserved quantum number for large systems, supporting the conclusions reached by computing the energy quasi-eigenvalues. Including Heisenberg exchange interactions which brings the system to a quantum-critical point separating the valence-bond solid from an antiferromagnetic ground state (the putative deconfined quantum-critical point), we can also converge the domain wall energy here and find that it decays as a power-law of the system size. Thus, the winding number is an emergent quantum number also at the critical point, with all winding number sectors becoming degenerate in the thermodynamic limit. This supports the description of the critical point in terms of a U(1) gauge-field theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا