ترغب بنشر مسار تعليمي؟ اضغط هنا

The Digital Restoration of Da Vincis Sketches

48   0   0.0 ( 0 )
 نشر من قبل Amelia Sparavigna
 تاريخ النشر 2009
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Amelia Sparavigna




اسأل ChatGPT حول البحث

A sketch, found in one of Leonardo da Vincis notebooks and covered by the written notes of this genius, has been recently restored. The restoration reveals a possible self-portrait of the artist, drawn when he was young. Here, we discuss the discovery of this self-portrait and the procedure used for restoration. Actually, this is a restoration performed on the digital image of the sketch, a procedure that can easily extended and applied to ancient documents for studies of art and palaeography.

قيم البحث

اقرأ أيضاً

A reciprocal structure (RS) is a mechanical resistant structure formed by a set of self-supporting elements satisfying certain conditions of structural reciprocity (SR) . The first condition is that each element of the structure has to support and be supported by the others. The second condition is that these functions cannot occur in the same part of the element. These two properties make beams and two-dimensional materials very much appropriate to build RSs. Commonly seen in floors or roofs, SR is also present in art, religious symbols and decorative objects. Da Vinci has drawn several examples of such RSs. Here, we propose a simple nano version of a da Vincis RS based on graphene nanoribbons. The stability and resistance against mechanical impacts (ballistic projectile) were investigated through fully atomistic molecular dynamics (MD) simulations. We considered structures with three and four joins with and without RS topologies. Our MD results showed that structures with RS topologies are more impact resistant than those without SR, despite the fact that the used graphene nanoribbons are highly pliable. We discuss these results in terms of the number of joins, energy absorption and stress on the structures. We discuss possible applications in nanoengineering.
69 - Amelia Sparavigna 2009
Image processing can be used for digital restoration of ancient papyri, that is, for a restoration performed on their digital images. The digital manipulation allows reducing the background signals and enhancing the readability of texts. In the case of very old and damaged documents, this is fundamental for identification of the patterns of letters. Some examples of restoration, obtained with an image processing which uses edges detection and Fourier filtering, are shown. One of them concerns 7Q5 fragment of the Dead Sea Scrolls.
We present a novel approach of color transfer between images by exploring their high-level semantic information. First, we set up a database which consists of the collection of downloaded images from the internet, which are segmented automatically by using matting techniques. We then, extract image foregrounds from both source and multiple target images. Then by using image matting algorithms, the system extracts the semantic information such as faces, lips, teeth, eyes, eyebrows, etc., from the extracted foregrounds of the source image. And, then the color is transferred between corresponding parts with the same semantic information. Next we get the color transferred result by seamlessly compositing different parts together using alpha blending. In the final step, we present an efficient method of color consistency to optimize the color of a collection of images showing the common scene. The main advantage of our method over existing techniques is that it does not need face matching, as one could use more than one target images. It is not restricted to head shot images as we can also change the color style in the wild. Moreover, our algorithm does not require to choose the same color style, same pose and image size between source and target images. Our algorithm is not restricted to one-to-one image color transfer and can make use of more than one target images to transfer the color in different parts in the source image. Comparing with other approaches, our algorithm is much better in color blending in the input data.
This paper addresses mesh restoration problems, i.e., denoising and completion, by learning self-similarity in an unsupervised manner. For this purpose, the proposed method, which we refer to as Deep Mesh Prior, uses a graph convolutional network on meshes to learn the self-similarity. The network takes a single incomplete mesh as input data and directly outputs the reconstructed mesh without being trained using large-scale datasets. Our method does not use any intermediate representations such as an implicit field because the whole process works on a mesh. We demonstrate that our unsupervised method performs equally well or even better than the state-of-the-art methods using large-scale datasets.
We present a fully automatic system that can produce high-fidelity, photo-realistic 3D digital human heads with a consumer RGB-D selfie camera. The system only needs the user to take a short selfie RGB-D video while rotating his/her head, and can pro duce a high quality head reconstruction in less than 30 seconds. Our main contribution is a new facial geometry modeling and reflectance synthesis procedure that significantly improves the state-of-the-art. Specifically, given the input video a two-stage frame selection procedure is first employed to select a few high-quality frames for reconstruction. Then a differentiable renderer based 3D Morphable Model (3DMM) fitting algorithm is applied to recover facial geometries from multiview RGB-D data, which takes advantages of a powerful 3DMM basis constructed with extensive data generation and perturbation. Our 3DMM has much larger expressive capacities than conventional 3DMM, allowing us to recover more accurate facial geometry using merely linear basis. For reflectance synthesis, we present a hybrid approach that combines parametric fitting and CNNs to synthesize high-resolution albedo/normal maps with realistic hair/pore/wrinkle details. Results show that our system can produce faithful 3D digital human faces with extremely realistic details. The main code and the newly constructed 3DMM basis is publicly available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا