ﻻ يوجد ملخص باللغة العربية
We report superconductivity in the SmFe0.9Co0.1AsO system being prepared by most easy and versatile single step solid-state reaction route. The parent compound SmFeAsO is non-superconducting but shows the spin density wave (SDW) like antiferromagnetic ordering at around 140K. To destroy the antiferromagnetic ordering and to induce the superconductivity in the parent system, the Fe2+ is substituted partially by Co3+. Superconductivity appears in SmFe0.9Co0.1AsO system at around 14K. The Co doping suppresses the SDW anomaly in the parent compound and induces the superconductivity. Magnetization measurements show clearly the onset of superconductivity with Tcdia at 14K. The isothermal magnetization measurements exhibit the lower critical fields (Hc1) to be around 200Oe at 2 K. The bulk superconductivity of the studied SmFe0.9Co0.1AsO sample is further established by open diamagnetic M(H) loops at 2, and 5K. Normal state (above Tc) linear isothermal magnetization M(H) plots excluded presence of any ordered magnetic impurity in the studied compound.
Here we report the synthesis and basic characterization of LaFe1-xCoxAsO for several values of x. The parent phase LaFeAsO orders antiferromagnetically (TN ~ 145 K). Replacing Fe with Co is expected to both electron dope the system and introduce diso
We report superconductivity in single crystals of the new iron-pnictide system BaFe1.9Pt0.1As2 grown by a self-flux solution method and characterized via x-ray, transport, magnetic and thermodynamic measurements. The magnetic ordering associated with
Here we report the synthesis and basic characterization of SmFe1-xCoxAsO (x=0.10, 0.15). The parent compound SmFeAsO itself is not superconducting but shows an antiferromagnetic order near 150 K, which must be suppressed by doping before superconduct
Two-dimensional (2D) transition-metal dichalcogenide (TMDs) MoTe2 has attracted much attention due to its predicted Weyl semimetal (WSM) state and a quantum spin Hall insulator in bulk and monolayer form, respectively. We find that the superconductiv
We report on infrared studies of charge dynamics in a prototypical pnictide system: the BaFe2As2 family. Our experiments have identified hallmarks of the pseudogap state in the BaFe2As2 system that mirror the spectroscopic manifestations of the pseud