ترغب بنشر مسار تعليمي؟ اضغط هنا

The prototype string for the km3-scale Baikal neutrino telescope

78   0   0.0 ( 0 )
 نشر من قبل Ralf Wischnewski
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف V. Aynutdinov




اسأل ChatGPT حول البحث

A prototype string for the future km3-scale Baikal neutrino telescope has been deployed in April, 2008 and is fully integrated into the NT200+ telescope. All basic string elements - optical modules (with 12/13 hemispherical photomultipliers), 200MHz FADC readout and calibration system - have been redesigned following experience with NT200+. First results of in-situ operation of this prototype string are presented.



قيم البحث

اقرأ أيضاً

80 - Ulrich F. Katz 2006
The observation of high-energy extraterrestrial neutrinos is one of the most promising future options to increase our knowledge on non-thermal processes in the universe. Neutrinos are e.g. unavoidably produced in environments where high-energy hadron s collide; in particular this almost certainly must be true in the astrophysical accelerators of cosmic rays, which thus could be identified unambiguously by sky observations in neutrino light. To establish neutrino astronomy beyond the detection of single events, neutrino telescopes of km3 scale are needed. In order to obtain full sky coverage, a corresponding detector in the Mediterranean Sea is required to complement the IceCube experiment currently under construction at the South Pole. The groups pursuing the current neutrino telescope projects in the Mediterranean Sea, ANTARES, NEMO and NESTOR, have joined to prepare this future installation in a 3-year, EU-funded Design Study named KM3NeT. This report will highlight some of the physics issues to be addressed with the KM3NeT detector and will outline the path towards its realisation, with a focus on the upcoming Design Study.
We present data on the Baikal water luminescence collected with the Baikal-GVD neutrino telescope. This three-dimensional array of photo-sensors allows the observation of time and spatial variations of the ambient light field. We report on annual inc rease of luminescence activity in years 2018-2020. We observed a unique event of a highly luminescent layer propagating upwards with a maximum speed of 28 m/day for the first time.
128 - Dmitry Zaborov 2020
Neutrino astronomy offers a novel view of the non-thermal Universe and is complementary to other astronomical disciplines. The field has seen rapid progress in recent years, including the first detection of astrophysical neutrinos in the TeV-PeV ener gy range by IceCube and the first identified extragalactic neutrino source (TXS 0506+056). Further discoveries are aimed for with new cubic-kilometer telescopes in the Northern Hemisphere: Baikal-GVD, in Lake Baikal, and KM3NeT-ARCA, in the Mediterranean sea. The construction of Baikal-GVD proceeds as planned; the detector currently includes over 2000 optical modules arranged on 56 strings, providing an effective volume of 0.35 km$^3$. We review the scientific case for Baikal-GVD, the construction plan, and first results from the partially built array.
Baikal-GVD is a neutrino telescope currently under construction in Lake Baikal. GVD is formed by multi-meganton subarrays (clusters). The design of Baikal-GVD allows one to search for astrophysical neutrinos already at early phases of the array const ruction. We present here preliminary results of a search for high-energy neutrinos with GVD in 2019-2020.
A hydro-acoustic imaging system was tested in a pilot study on distant localization of elements of the Baikal underwater neutrino telescope. For this innovative approach, based on broad band acoustic echo signals and strictly avoiding any active acou stic elements on the telescope, the imaging system was temporarily installed just below the ice surface, while the telescope stayed in its standard position at 1100 m depth. The system comprised an antenna with four acoustic projectors positioned at the corners of a 50 meter square; acoustic pulses were linear sweep-spread signals - multiple-modulated wide-band signals (10-22 kHz) of 51.2 s duration. Three large objects (two string buoys and the central electronics module) were localized by the 3D acoustic imaging, with a accuracy of ~0.2 m (along the beam) and ~1.0 m (transverse). We discuss signal forms and parameters necessary for improved 3D acoustic imaging of the telescope, and suggest a layout of a possible stationary bottom based 3D imaging setup. The presented technique may be of interest for neutrino telescopes of km3-scale and beyond, as a flexible temporary or as a stationary tool to localize basic telescope elements, while these are completely passive.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا