ترغب بنشر مسار تعليمي؟ اضغط هنا

The Minimum Jeans Mass, Brown Dwarf Companion IMF, and Predictions for Detection of Y-type Dwarfs

60   0   0.0 ( 0 )
 نشر من قبل Inseok Song
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cool L- and T-type objects were discovered first as companions to stars in 1988 and 1995, respectively. A certain example of the yet cooler Y-type spectral class (Teff <~ 500K?) has not been seen. Recent infrared imaging observations of stars and brown dwarfs indicate that substellar companions with large semi-major axes and with masses less than the brown dwarf/giant planet dividing line (~13.5 Mj) are rare. Theoretical considerations of Jeans mass fragmentation of molecular clouds are consistent with this minimum mass cutoff and also with the semi-major axis (hundreds of AU) characteristic of the lowest mass imaged companions. As a consequence, Y-class companions with large semi-major axes should be scarce around stars <2Gyr old, and also around substellar primaries of all ages. By focusing on brown dwarf companions to young stellar primaries, it is possible to derive a first estimate of the brown dwarf IMF over the entire range of brown dwarf masses (13 Mj to 79 Mj) -- the number of companion brown dwarfs is proportional to mass to the -1.2+-0.2 power.


قيم البحث

اقرأ أيضاً

We present the discovery of another seven Y dwarfs from the Wide-field Infrared Survey Explorer (WISE). Using these objects, as well as the first six WISE Y dwarf discoveries from Cushing et al., we further explore the transition between spectral typ es T and Y. We find that the T/Y boundary roughly coincides with the spot where the J-H colors of brown dwarfs, as predicted by models, turn back to the red. Moreover, we use preliminary trigonometric parallax measurements to show that the T/Y boundary may also correspond to the point at which the absolute H (1.6 um) and W2 (4.6 um) magnitudes plummet. We use these discoveries and their preliminary distances to place them in the larger context of the Solar Neighborhood. We present a table that updates the entire stellar and substellar constituency within 8 parsecs of the Sun, and we show that the current census has hydrogen-burning stars outnumbering brown dwarfs by roughly a factor of six. This factor will decrease with time as more brown dwarfs are identified within this volume, but unless there is a vast reservoir of cold brown dwarfs invisible to WISE, the final space density of brown dwarfs is still expected to fall well below that of stars. We also use these new Y dwarf discoveries, along with newly discovered T dwarfs from WISE, to investigate the field substellar mass function. We find that the overall space density of late-T and early-Y dwarfs matches that from simulations describing the mass function as a power law with slope -0.5 < alpha < 0.0; however, a power-law may provide a poor fit to the observed object counts as a function of spectral type because there are tantalizing hints that the number of brown dwarfs continues to rise from late-T to early-Y. More detailed monitoring and characterization of these Y dwarfs, along with dedicated searches aimed at identifying more examples, are certainly required.
57 - I. A. Bonnell 2006
We use numerical simulations of the fragmentation of a 1000 solar mass molecular cloud and the formation of a stellar cluster to study how the initial conditions for star formation affect the resulting initial mass function (IMF). In particular, we a re interested in the relation between the thermal Jeans mass in a cloud and the knee of the initial mass function, i.e. the mass separating the region with a flat IMF slope from that typified by a steeper, Salpeter-like, slope. In three isothermal simulations with M_J=1 solar mass, M_J=2 solar masses and M_J=5 solar masses, the number of stars formed, at comparable dynamical times, scales roughly with the number of initial Jeans masses in the cloud. The mean stellar mass also increases (though less than linearly) with the initial Jeans mass in the cloud. It is found that the IMF in each case displays a prominent knee, located roughly at the mass scale of the initial Jeans mass. Thus clouds with higher initial Jeans masses produce IMFs which are shallow to higher masses. This implies that a universal IMF requires a physical mechanism that sets the Jeans mass to be near 1 solar mass. Simulations including a barotropic equation of state as suggested by Larson, with cooling at low densities followed by gentle heating at higher densities, are able to produce realistic IMFs with the knee located at approximately 1 solar mass, even with an initial M_J=5 solar masses. We therefore suggest that the observed universality of the IMF in the local Universe does not require any fine tuning of the initial conditions in star forming clouds but is instead imprinted by details of the cooling physics of the collapsing gas.
The survey of the mid-infrared sky by the Wide-field Infrared Survey Explorer (WISE) led to the discovery of extremely cold low-mass brown dwarfs, classified as Y dwarfs, which extend the T class to lower temperatures. Twenty-four Y dwarfs are known at the time of writing. Here we present improved parallaxes for four of these, determined using Spitzer images. We give new photometry for four late-type T and three Y dwarfs, and new spectra of three Y dwarfs, obtained at Gemini Observatory. We also present previously unpublished photometry taken from HST, ESO, Spitzer and WISE archives of 11 late-type T and 9 Y dwarfs. The near-infrared data are put on to the same photometric system, forming a homogeneous data set for the coolest brown dwarfs. We compare recent models to our photometric and spectroscopic data set. We confirm that non-equilibrium atmospheric chemistry is important for these objects. Non-equilibrium cloud-free models reproduce well the near-infrared spectra and mid-infrared photometry for the warmer Y dwarfs with 425 <= T_eff K <= 450. A small amount of cloud cover may improve the model fits in the near-infrared for the Y dwarfs with 325 <= T_eff K <= 375. Neither cloudy nor cloud-free models reproduce the near-infrared photometry for the T_eff = 250 K Y dwarf W0855. We use the mid-infrared region, where most of the flux originates, to constrain our models of W0855. We find that W0855 likely has a mass of 1.5 - 8 Jupiter masses and an age of 0.3 - 6 Gyr. The Y dwarfs with measured parallaxes are within 20 pc of the Sun and have tangential velocities typical of the thin disk. The metallicities and ages we derive for the sample are generally solar-like. We estimate that the known Y dwarfs are 3 to 20 Jupiter-mass objects with ages of 0.6 to 8.5 Gyr.
145 - V. Joergens , A. Mueller 2007
We report the discovery of a 16-20 Jupiter mass radial velocity companion around the very young (~3 Myr) brown dwarf candidate ChaHa8 (M5.75-M6.5). Based on high-resolution echelle spectra of ChaHa8 taken between 2000 and 2007 with UVES at the VLT, a companion was detected through RV variability with a semi-amplitude of 1.6 km/s. A Kepler fit to the data yields an orbital period of the companion of 1590 days and an eccentricity of e=0.49. A companion minimum mass M2sini between 16 and 20 Jupiter masses is derived when using model-dependent mass estimates for the primary. The mass ratio q= M2/M1 might be as small as 0.2 and, with a probability of 87%, it is less than 0.4. ChaHa8 harbors most certainly the lowest mass companion detected so far in a close (~ 1 AU) orbit around a brown dwarf or very low-mass star. From the uncertainty in the orbit solution, it cannot completely be ruled out that the companion has a mass in the planetary regime. Its discovery is in any case an important step towards RV planet detections around BDs. Further, ChaHa8 is the fourth known spectroscopic brown dwarf or very low-mass binary system with an RV orbit solution and the second known very young one.
We present the discovery of a planetary-mass companion to CFHTWIR-Oph 98, a low-mass brown dwarf member of the young Ophiuchus star-forming region, with a wide 200-au separation (1.46 arcsec). The companion was identified using Hubble Space Telescope images, and confirmed to share common proper motion with the primary using archival and new ground-based observations. Based on the very low probability of the components being unrelated Ophiuchus members, we conclude that Oph 98 AB forms a binary system. From our multi-band photometry, we constrain the primary to be an M9-L1 dwarf, and the faint companion to have an L2-L6 spectral type. For a median age of 3 Myr for Ophiuchus, fits of evolutionary models to measured luminosities yield masses of $15.4pm0.8$ M$_mathrm{Jup}$ for Oph 98 A and $7.8pm0.8$ M$_mathrm{Jup}$ for Oph 98 B, with respective effective temperatures of $2320pm40$ K and $1800pm40$ K. For possible system ages of 1-7 Myr, masses could range from 9.6-18.4 M$_mathrm{Jup}$ for the primary, and from 4.1-11.6 M$_mathrm{Jup}$ for the secondary. The low component masses and very large separation make this binary the lowest binding energy system imaged to date, indicating that the outcome of low-mass star formation can result in such extreme, weakly-bound systems. With such a young age, Oph 98 AB extends the growing population of young free-floating planetary-mass objects, offering a new benchmark to refine formation theories at the lowest masses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا