ترغب بنشر مسار تعليمي؟ اضغط هنا

Kahler-Einstein Structures of General Natural Lifted Type on the Cotangent Bundles

127   0   0.0 ( 0 )
 نشر من قبل Simona Druta
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف S. L. Druta




اسأل ChatGPT حول البحث

We study the conditions under which the cotangent bundle $T^*M$ of a Riemaannian manifold $(M,g)$, endowed with a Kahlerian structure $(G,J)$ of general natural lift type (see cite{Druta1}), is Einstein. We first obtain a general natural Kahler-Einstein structure on the cotangent bundle $T^*M$. In this case, a certain parameter, $lambda$ involved in the condition for $(T^*M,G,J)$ to be a Kahlerian manifold, is expressed as a rational function of the other two, the value of the constant sectional curvature, $c$, of the base manifold $(M,g)$ and the constant $rho$ involved in the condition for the structure of being Einstein. This expression of $lambda$ is just that involved in the condition for the Kahlerian manifold to have constant holomorphic sectional curvature (see cite{Druta2}). In the second case, we obtain a general natural Kahler-Einstein structure only on $T_0M$, the bundle of nonzero cotangent vectors to $M$. For this structure, $lambda$ is expressed as another function of the other two parameters, their derivatives, $c$ and $rho$.



قيم البحث

اقرأ أيضاً

168 - S.L. Druta 2008
We study the conditions under which an almost Hermitian structure $(G,J)$ of general natural lift type on the cotangent bundle $T^*M$ of a Riemannian manifold $(M,g)$ is K ahlerian. First, we obtain the algebraic conditions under which the manifold $ (T^*M,G,J)$ is almost Hermitian. Next we get the integrability conditions for the almost complex structure $J$, then the conditions under which the associated 2-form is closed. The manifold $(T^*M,G,J)$ is K ahlerian iff it is almost Kahlerian and the almost complex structure $J$ is integrable. It follows that the family of Kahlerian structures of above type on $T^*M$ depends on three essential parameters (one is a certain proportionality factor, the other two are parameters involved in the definition of $J$).
183 - S. L. Druta 2008
We study the conditions under which a Kahlerian structure $(G,J)$ of general natural lift type on the cotangent bundle $T^*M$ of a Riemannian manifold $(M,g)$ has constant holomorphic sectional curvature. We obtain that a certain parameter involved i n the condition for $(T^*M,G,J)$ to be a Kahlerian manifold, is expressed as a rational function of the other two, their derivatives, the constant sectional curvature of the base manifold $(M,g)$, and the constant holomorphic sectional curvature of the general natural Kahlerian structure $(G,J)$.
168 - S. L. Druta 2008
We study the conditions under which the tangent bundle $(TM,G)$ of an $n$-dimensional Riemannian manifold $(M,g)$ is conformally flat, where $G$ is a general natural lifted metric of $g$. We prove that the base manifold must have constant sectional c urvature and we find some expressions for the natural lifted metric $G$, such that the tangent bundle $(TM,G)$ become conformally flat.
157 - S. Druta 2008
We study some properties of the tangent bundles with metrics of general natural lifted type. We consider a Riemannian manifold $(M,g)$ and we find the conditions under which the Riemannian manifold $(TM,G)$, where $TM$ is the tangent bundle of $M$ an d $G$ is the general natural lifted metric of $g$, has constant sectional curvature.
We obtain the natural diagonal almost product and locally product structures on the total space of the cotangent bundle of a Riemannian manifold. We find the Riemannian almost product (locally product) and the (almost) para-Hermitian cotangent bundle s of natural diagonal lift type. We prove the characterization theorem for the natural diagonal (almost) para-Kahlerian structures on the total spaces of the cotangent bundle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا