ترغب بنشر مسار تعليمي؟ اضغط هنا

Kondo decoherence: finding the right spin model for iron impurities in gold and silver

194   0   0.0 ( 0 )
 نشر من قبل Theo Costi
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We exploit the decoherence of electrons due to magnetic impurities, studied via weak localization, to resolve a longstanding question concerning the classic Kondo systems of Fe impurities in the noble metals gold and silver: which Kondo-type model yields a realistic description of the relevant multiple bands, spin and orbital degrees of freedom? Previous studies suggest a fully screened spin $S$ Kondo model, but the value of $S$ remained ambiguous. We perform density functional theory calculations that suggest $S = 3/2$. We also compare previous and new measurements of both the resistivity and decoherence rate in quasi 1-dimensional wires to numerical renormalization group predictions for $S=1/2,1$ and 3/2, finding excellent agreement for $S=3/2$.



قيم البحث

اقرأ أيضاً

We consider iron impurities in the noble metals gold and silver and compare experimental data for the resistivity and decoherence rate to numerical renormalization group results. By exploiting non-Abelian symmetries we show improved numerical data fo r both quantities as compared to previous calculations [Costi et al., Phys. Rev. Lett. 102, 056802 (2009)], using the discarded weight as criterion to reliably judge the quality of convergence of the numerical data. In addition we also carry out finite-temperature calculations for the magnetoresistivity of fully screened Kondo models with S = 1/2, 1 and 3/2, and compare the results with available measurements for iron in silver, finding excellent agreement between theory and experiment for the spin-3/2 three-channel Kondo model. This lends additional support to the conclusion of Costi et al. that the latter model provides a good effective description of the Kondo physics of iron impurities in gold and silver.
We present here the details of a method [A. B. Culver and N. Andrei, Phys. Rev. B 103, L201103 (2021)] for calculating the time-dependent many-body wavefunction that follows a local quench. We apply the method to the voltage-driven nonequilibrium Kon do model to find the exact time-evolving wavefunction following a quench where the dot is suddenly attached to the leads at $t=0$. The method, which does not use Bethe ansatz, also works in other quantum impurity models and may be of wider applicability. We show that the long-time limit (with the system size taken to infinity first) of the time-evolving wavefunction of the Kondo model is a current-carrying nonequilibrium steady state that satisfies the Lippmann-Schwinger equation. We show that the electric current in the time-evolving wavefunction is given by a series expression that can be expanded either in weak coupling or in strong coupling, converging to all orders in the steady-state limit in either case. The series agrees to leading order with known results in the well-studied regime of weak antiferromagnetic coupling and also reveals a universal regime of strong ferromagnetic coupling with Kondo temperature $T_K^{(F)} = D e^{-frac{3pi^2}{8} rho |J|}$ ($J<0$, $rho|J|toinfty$). In this regime, the differential conductance $dI/dV$ reaches the unitarity limit $2e^2/h$ asymptotically at large voltage or temperature.
Transition metal impurities will yield zero bias anomalies in the conductance of well contacted metallic carbon nanotubes, but Kondo temperatures and geometry dependences have not been anticipated so far. Applying the density functional plus numerica l renormalization group approach of Lucignano textit{et al.} to Co and Fe impurities in (4,4) and (8,8) nanotubes, we discover a huge difference of behaviour between outside versus inside adsorption of the impurity. The predicted Kondo temperatures and zero bias anomalies, tiny outside the nanotube, turn large and strongly radius dependent inside, owing to a change of symmetry of the magnetic orbital. Observation of this Kondo effect should open the way to a host of future experiments.
We show that the paradigmatic Ruderman-Kittel-Kasuya-Yosida (RKKY) description of two local magnetic moments coupled to propagating electrons breaks down in helical Luttinger Liquids when the electron interaction is stronger than some critical value. In this novel regime, the Kondo effect overwhelms the RKKY interaction over all macroscopic inter-impurity distances. This phenomenon is a direct consequence of the helicity (realized, for instance, at edges of a time-reversal invariant topological insulator) and does not take place in usual (non-helical) Luttinger Liquids.
The effect of magnetic impurities on the ballistic conductance of nanocontacts is, as suggested in recent work, amenable to ab initio study cite{naturemat}. Our method proceeds via a conventional density functional calculation of spin and symmetry de pendent electron scattering phase shifts, followed by the subsequent numerical renormalization group solution of Anderson models -- whose ingredients and parameters are chosen so as to reproduce these phase shifts. We apply this method to investigate the Kondo zero bias anomalies that would be caused in the ballistic conductance of perfect metallic (4,4) and (8,8) single wall carbon nanotubes, ideally connected to leads at the two ends, by externally adsorbed Co and Fe adatoms. The different spin and electronic structure of these impurities are predicted to lead to a variety of Kondo temperatures, generally well below 10 K, and to interference between channels leading to Fano-like conductance minima at zero bias.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا