ترغب بنشر مسار تعليمي؟ اضغط هنا

VERITAS Discovery of >200GeV Gamma-ray Emission from the Intermediate-frequency-peaked BL Lac Object W Comae

501   0   0.0 ( 0 )
 نشر من قبل Matthias Beilicke
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detection of very high-energy gamma-ray emission from the intermediate-frequency-peaked BL Lacertae object W Comae (z=0.102) by VERITAS. The source was observed between January and April 2008. A strong outburst of gamma-ray emission was measured in the middle of March, lasting for only four days. The energy spectrum measured during the two highest flare nights is fit by a power-law and is found to be very steep, with a differential photon spectral index of Gamma = 3.81 +- 0.35_stat +- 0.34_syst. The integral photon flux above 200GeV during those two nights corresponds to roughly 9% of the flux from the Crab Nebula. Quasi-simultaneous Swift observations at X-ray energies were triggered by the VERITAS observations. The spectral energy distribution of the flare data can be described by synchrotron-self-Compton (SSC) or external-Compton (EC) leptonic jet models, with the latter offering a more natural set of parameters to fit the data.



قيم البحث

اقرأ أيضاً

241 - M. Orr 2013
Here we present highlights from VERITAS observations of high-frequency-peaked BL Lac objects (HBLs). We discuss the key science motivations for observing these sources -- including performing multiwavelength campaigns critical to understanding the em ission mechanisms at work in HBLs, constraining the intensity and spectra shape of the extragalactic background light, and placing limits on the strength of the intergalactic magnetic field.
1ES 0414+009 (z = 0.287) is a distant high-frequency-peaked BL Lac object, and has long been considered a likely emitter of very-high energy (VHE, E>100 GeV) gamma-rays due to its high X-ray and radio flux. Observations in the VHE gamma-ray band and across the electromagnetic spectrum can provide insights into the origin of highly energetic particles present in the source and the radiation processes at work. Because of the distance of the source, the gamma-ray spectrum might provide further limits on the level of the Extragalactic Background Light (EBL). We report observations made between October 2005 and December 2009 with H.E.S.S., an array of four imaging atmospheric Cherenkov telescopes. Observations at high energies (HE, 100 MeV - 100 GeV) with the Fermi-LAT instrument in the first 20 months of its operation are also reported. To complete the multi-wavelength picture, archival UV and X-ray observations with the Swift satellite and optical observations with the ATOM telescope are also used. Based on the observations with H.E.S.S., 1ES 0414+009 is detected for the first time in the VHE band. An excess of 224 events is measured, corresponding to a significance of 7.8 sigma. The photon spectrum of the source is well described by a power law, with photon index of 3.45 pm 0.25stat pm 0.20syst. The integral flux above 200 GeV is (1.88 pm 0.20stat pm 0.38syst) times10-12 cm-2 s-1. Observations with the Fermi-LAT in the first 20 months of operation show a flux between 200 MeV and 100 GeV of (2.3 pm 0.2stat) times 10-9 erg cm-2 s-1, and a spectrum well described by a power-law function with a photon index 1.85 pm 0.18. Swift/XRT observations show an X-ray flux between 2 and 10 keV of (0.8 - 1) times 10-11 erg cm-2 s-1, and a steep spectrum (2.2 - 2.3). Combining X-ray with optical-UV data, a fit with a log-parabolic function locates the synchrotron peak around 0.1 keV. ...
BL Lac objects are known to have very energetic jets pointing towards the observer under small viewing angles. Many of these show high luminosity over the whole energy range up to TeV, mostly classified as high-energy peaked BL Lac objects. Recently, TeV gamma-ray emission was detected from a low-energy peaked BL Lac object. Interestingly, this source has also a clear detection of an X-ray jet. We present a detailed study of this X-ray jet and its connection to the radio jet as well as a study of the underlying physical processes in the energetic jet, producing emission from the radio to the TeV range.
57 - M. Boettcher 2002
Spectral fitting of the radio through hard X-ray emission of BL Lac objects has previously been used to predict their level of high-energy (GeV - TeV) emission. In this paper, we point out that such spectral fitting can have very large uncertainties with respect to predictions of the VHE emission. This is demonstrated with the example of W Comae. We show that the best currently available contemporaneous optical - X-ray spectrum of W Comae still allows for a large range of possible parameters, resulting in drastically different > 40 GeV fluxes. We find that all acceptable leptonic-model fits to the optical - X-ray emission of W Comae predict a cut-off of the high-energy emission around ~ 100 GeV. We suggest that detailed measurements and analysis of the soft X-ray variability of W Comae may be used to break the degeneracy in the choice of possible fit parameters, and thus allow a more reliable prediction of the VHE emission from this object. Using the available soft X-ray variability measured by BeppoSAX, we predict a > 40 GeV flux from W Comae of ~ (0.4 - 1) * 10^{-10} photons/(cm^2 s) with no significant emission at E > 100 GeV for a leptonic jet model. We compare our results concerning leptonic jet models with detailed predictions of the hadronic Synchrotron-Proton Blazar model. This hadronic model predicts > 40 GeV fluxes very similar to those found for the leptonic models, but results in > 100 GeV emission which should be clearly detectable with future high-sensitivity instruments like VERITAS. Thus, we suggest this object as a promising target for VHE gamma-ray and co-ordinated broadband observations to distinguish between leptonic and hadronic jet models for blazars.
We study the non-thermal jet emission of the BL Lac object B3 2247+381 during a high optical state. The MAGIC telescopes observed the source during 13 nights between September 30th and October 30th 2010, collecting a total of 14.2 hours of good quali ty very high energy (VHE) $gamma$-ray data. Simultaneous multiwavelength data was obtained with X-ray observations by the Swift satellite and optical R-band observations at the KVA-telescope. We also use high energy $gamma$-ray (HE, 0.1 GeV-100 GeV) data from the Fermi satellite. The BL Lac object B3 2247+381 (z=0.119) was detected, for the first time, at VHE $gamma$-rays at a statistical significance of 5.6 $sigma$. A soft VHE spectrum with a photon index of -3.2 $pm$ 0.6 was determined. No significant short term flux variations were found. We model the spectral energy distribution using a one-zone SSC-model, which can successfully describe our data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا