ترغب بنشر مسار تعليمي؟ اضغط هنا

Is a step in the primordial spectral index favored by CMB data ?

124   0   0.0 ( 0 )
 نشر من قبل Minu Joy
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A sudden small change in the second derivative of the inflaton potential can result in a universal local feature in the spectrum of primordial perturbations generated during inflation. The exact solution describing this feature cite{minu} is characterized by a step in the spectral index modulated by characteristic oscillations and results in a large running of the spectral index localized over a few e-folds of scale. In this paper we confront this step-like feature with the 5 year WMAP results and demonstrate that it provides a better fit to this data than a featureless initial spectrum. If such a feature exists at all, then it should lie at sufficiently large scales $k_0 lesssim 0.003 {rm Mpc}^{-1}$ corresponding to $l lesssim 40$. The sign of the effect is shown to correspond to the negative running of $n_s$ localized near this scale. This feature could arise as a result of a `mini-waterfall-type fast second order phase transition experienced by an auxiliary heavy field during inflation, in a model similar to hybrid inflation (though for a different choice of parameters). If this is the case, then the auxiliary field should be positively coupled to the inflaton.

قيم البحث

اقرأ أيضاً

There is a growing expectation that the gravitational wave detectors will start probing the stochastic gravitational wave backgrounds in the following years. We explore the spectral shapes of gravitational waves induced to second order by scalar pert urbations and presumably have been produced in the early universe. We calculate the gravitational wave spectra generated during radiation and kination eras together with the associated primordial black hole counterpart. We employ power spectra for the primordial curvature perturbation generated by $alpha$-attractors and nonminimal derivative coupling inflation models as well as Gaussian and delta-type shapes. We demonstrate the ability of the tensor modes to constrain the spectrum of the primordial curvature perturbations and discriminate among inflationary models. Gravitational wave production during kination and radiation era can also be distinguished by their spectral shapes and amplitudes.
Magnetic fields are everywhere in nature and they play an important role in every astronomical environment which involves the formation of plasma and currents. It is natural therefore to suppose that magnetic fields could be present in the turbulent high temperature environment of the big bang. Such a primordial magnetic field (PMF) would be expected to manifest itself in the cosmic microwave background (CMB) temperature and polarization anisotropies, and also in the formation of large- scale structure. In this review we summarize the theoretical framework which we have developed to calculate the PMF power spectrum to high precision. Using this formulation, we summarize calculations of the effects of a PMF which take accurate quantitative account of the time evolution of the cut off scale. We review the constructed numerical program, which is without approximation, and an improvement over the approach used in a number of previous works for studying the effect of the PMF on the cosmological perturbations. We demonstrate how the PMF is an important cosmological physical process on small scales. We also summarize the current constraints on the PMF amplitude $B_lambda$ and the power spectral index $n_B$ which have been deduced from the available CMB observational data by using our computational framework.
Cosmic Microwave Background (CMB) polarization B-modes induced by Faraday Rotation (FR) can provide a distinctive signature of primordial magnetic fields because of their characteristic frequency dependence and because they are only weakly damped on small scales. FR also leads to mode-coupling correlations between the E and B type polarization, and between the temperature and the B-mode. These additional correlations can further help distinguish magnetic fields from other sources of B-modes. We review the FR induced CMB signatures and present the constraints on primordial magnetism that can be expected from upcoming CMB experiments. Our results suggest that FR of CMB will be a promising probe of primordial magnetic fields.
I discuss constraints on the power spectrum of primordial tensor perturbations from a combination of Cosmic Microwave Background (CMB) measurements and the gravitational wave direct detection experiments LIGO/Virgo and DECIGO. There are two main poin ts: (1) Inflation predicts an approximately power-law form for the primordial tensor spectrum, but makes no prediction for its amplitude. Given that neither Planck nor LIGO/Virgo has actually detected primordial tensor modes, it is trivially true that no model-independent constraint on the slope of the tensor power spectrum is possible with current data. (2) CMB and LIGO/Virgo scales differ by more than 19 orders of magnitude, and 16 for DECIGO. I show that a power-law extrapolation from CMB to direct detection frequencies overestimates the amplitude of primordial tensor modes by as much as two orders of magnitude relative to an ensemble of realistic single-field inflation models. Moreover, the primordial tensor amplitude at direct detection scales is mostly uncorrelated with the tensor spectral index at CMB scales, and any constraint is strongly dependent on the specific form of the inflationary potential.
We perform a search for binary black hole mergers with one subsolar mass black hole and a primary component above $2 M_odot$ in the second observing run of LIGO/Virgo. Our analysis therefore extends previous searches into a mass region motivated by t he presence of a peak in any broad mass distribution of primordial black holes (PBHs) around $[2-3] M_odot$ coming from the equation of state reduction at the QCD transition. Four candidate events are found passing a false alarm rate (FAR) threshold of 2 per year, although none are statistically significant enough for being clear detections. We first derive model independent limits on the PBH merging rates assuming a null result of the search. Then we confront them to two recent scenarios in which PBHs can constitute up to the totality of the Dark Matter, explain LIGO/Virgo mergers and the possible observation of a stochastic gravitational-wave background by NANOGrav. We find that these models still pass the rate limits and conclude that the analysis of the O3 and O4 observing runs will be decisive to test the hypothesis of a primordial origin of black hole mergers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا