ﻻ يوجد ملخص باللغة العربية
In this paper, we study the thermal entanglement in a two-qubit Heisenberg XYZ system with different Dzyaloshinskii-Moriya (DM) couplings. We show that different DM coupling parameters have different influences on the entanglement and the critical temperature. In addition, we find that when $J_{i}$ ($i$-component spin coupling interaction) is the largest spin coupling coefficient, $D_{i}$ ($i$-component DM interaction) is the most efficient DM control parameter, which can be obtained by adjusting the direction of DM interaction.
In order to explore the effect of external temperature $T$ in quantum correlation we compute thermal entanglement and thermal discord analytically in the Heisenberg $X$ $Y$ $Z$ model with Dzyaloshinskii-Moriya Interaction term ${bm D} cdot left( {bm
We investigate the entanglement in a two-qubit Heisenberg XYZ system with different Dzyaloshinskii-Moriya(DM) interaction and inhomogeneous magnetic field. It is found that the control parameters ($D_{x}$, $B_{x}$ and $b_{x}$) are remarkably differen
We study the thermodynamics of an XYZ Heisenberg chain with Dzyaloshinskii-Moriya interaction, which describes the low-energy behaviors of a one-dimensional spin-orbit-coupled bosonic model in the deep insulating region. The entropy and the specific
The thermal entanglement of a two-qubit anisotropic Heisenberg $XYZ$ chain under an inhomogeneous magnetic field b is studied. It is shown that when inhomogeneity is increased to certain value, the entanglement can exhibit a larger revival than that
The thermal entanglement is investigated in a two-qubit Heisenberg XXZ system with Dzyaloshinskii-Moriya (DM) interaction. It is shown that the entanglement can be efficiently controlled by the DM interaction parameter and coupling coefficient $J_{z}