ﻻ يوجد ملخص باللغة العربية
It has been recently found that the equations of motion of several semiclassical systems must take into account anomalous velocity terms arising from Berry phase contributions. Those terms are for instance responsible for the spin Hall effect in semiconductors or the gravitational birefringence of photons propagating in a static gravitational field. Intensive ongoing research on this subject seems to indicate that actually a broad class of quantum systems might have their dynamics affected by Berry phase terms. In this article we review the implication of a new diagonalization method for generic matrix valued Hamiltonians based on a formal expansion in power of $hbar$. In this approach both the diagonal energy operator and dynamical operators which depend on Berry phase terms and thus form a noncommutative algebra, can be expanded in power series in hbar $. Focusing on the semiclassical approximation, we will see that a large class of quantum systems, ranging from relativistic Dirac particles in strong external fields to Bloch electrons in solids have their dynamics radically modified by Berry terms.
Phase ordering dynamics of the (2+1)- and (3+1)-dimensional $phi^4$ theory with Hamiltonian equations of motion is investigated numerically. Dynamic scaling is confirmed. The dynamic exponent $z$ is different from that of the Ising model with dynamic
The variational Hamiltonian approach to Quantum Chromodynamics in Coulomb gauge is investigated within the framework of the canonical recursive Dyson--Schwinger equations. The dressing of the quark propagator arising from the variationally determined
Recently, it was demonstrated that one-loop energy shifts of spinning superstrings on AdS5xS5 agree with certain Bethe equations for quantum strings at small effective coupling. However, the string result required artificial regularization by zeta-fu
Gate-based quantum computers can in principle simulate the adiabatic dynamics of a large class of Hamiltonians. Here we consider the cyclic adiabatic evolution of a parameter in the Hamiltonian. We propose a quantum algorithm to estimate the Berry ph
We present a general theoretical framework for the exact treatment of a hybrid system that is composed of a quantum subsystem and a classical subsystem. When the quantum subsystem is dynamically fast and the classical subsystem is slow, a vector pote