ﻻ يوجد ملخص باللغة العربية
We derive rigorously explicit formulas of the Casimir free energy at finite temperature for massless scalar field and electromagnetic field confined in a closed rectangular cavity with different boundary conditions by zeta regularization method. We study both the low and high temperature expansions of the free energy. In each case, we write the free energy as a sum of a polynomial in temperature plus exponentially decay terms. We show that the free energy is always a decreasing function of temperature. In the cases of massless scalar field with Dirichlet boundary condition and electromagnetic field, the zero temperature Casimir free energy might be positive. In each of these cases, there is a unique transition temperature (as a function of the side lengths of the cavity) where the Casimir energy change from positive to negative. When the space dimension is equal to two and three, we show graphically the dependence of this transition temperature on the side lengths of the cavity. Finally we also show that we can obtain the results for a non-closed rectangular cavity by letting the size of some directions of a closed cavity going to infinity, and we find that these results agree with the usual integration prescription adopted by other authors.
In this paper we compute the leading order Casimir energy for the electromagnetic field (EM) in an open ended perfectly conducting rectangular waveguide in three spatial dimensions by a direct approach. For this purpose we first obtain the second qua
We reconsider the thermal scalar Casimir effect for $p$-dimensional rectangular cavity inside $D+1$-dimensional Minkowski space-time. We derive rigorously the regularization of the temperature-dependent part of the free energy by making use of the Ab
We consider the interaction pressure acting on the surface of a dielectric sphere enclosed within a magnetodielectric cavity. We determine the sign of this quantity regardless of the geometry of the cavity for systems at thermal equilibrium, extendin
Casimir force encodes the structure of the field modes as vacuum fluctuations and so it is sensitive to the extra dimensions of brane worlds. Now, in flat spacetimes of arbitrary dimension the two standard approaches to the Casimir force, Greens func
In this paper we study the behavior of the Casimir energy of a multi-cavity across the transition from the metallic to the superconducting phase of the constituting plates. Our analysis is carried out in the framework of the ARCHIMEDES experiment, ai