ترغب بنشر مسار تعليمي؟ اضغط هنا

Relativistic and Nonrelativistic Descriptions of Electron Energy Levels in a Static Magnetic Field

40   0   0.0 ( 0 )
 نشر من قبل Heinz Juergen Schreiber
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The physical consequences of the relativistic and nonrelativistic approaches to describe the energy levels of electrons which propagate in a static homogeneous magnetic field are considered. It is shown that for a given strength of the magnetic field, the quantized energy levels of the electrons calculated by nonrelativistic and relativistic equations differ substantially, up to few orders of magnitude for a magnetic field of about 1 Tesla. Experimental verification to resolve the discrepancy would be very welcome.

قيم البحث

اقرأ أيضاً

115 - Bruno Machet 2010
We obtain the following analytical formula which describes the dependence of the electric potential of a point-like charge on the distance away from it in the direction of an external magnetic field B: Phi(z) = e/|z| [ 1- exp(-sqrt{6m_e^2}|z|) + exp( -sqrt{(2/pi) e^3 B + 6m_e^2} |z|) ]. The deviation from Coulombs law becomes essential for B > 3pi B_{cr}/alpha = 3 pi m_e^2/e^3 approx 6 10^{16} G. In such superstrong fields, electrons are ultra-relativistic except those which occupy the lowest Landau level (LLL) and which have the energy epsilon_0^2 = m_e^2 + p_z^2. The energy spectrum on which LLL splits in the presence of the atomic nucleus is found analytically. For B > 3 pi B_{cr}/alpha, it substantially differs from the one obtained without accounting for the modification of the atomic potential.
The process of neutrino production of electron positron pairs in a magnetic field of arbitrary strength, where electrons and positrons can be created in the states corresponding to excited Landau levels, is analysed. The mean value of the neutrino en ergy loss due to the process $ u to u e^- e^+$ is calculated. The result can be applied for calculating the efficiency of the electron-positron plasma production by neutrinos in the conditions of the Kerr black hole accretion disc considered by experts as the most possible source of a short cosmological gamma burst. The presented research can be also useful for further development of the calculation technic for an analysis of quantum processes in external active medium, and in part in the conditions of moderately strong magnetic field, when taking account of the ground Landau level appears to be insufficient.
The process of neutrino production of electron positron pairs in a magnetic field of arbitrary strength, where electrons and positrons can be created in the states corresponding to excited Landau levels, is analysed. The mean value of the neutrino en ergy loss due to the process $ u to u e^- e^+$ is calculated. The result can be applied for calculating the efficiency of the electron-positron plasma production by neutrinos in the conditions of the Kerr black hole accretion disc considered by experts as the most possible source of a short cosmological gamma burst. The presented research can be also useful for further development of the calculation technic for an analysis of quantum processes in external active medium, and in part in the conditions of moderately strong magnetic field, when taking account of the ground Landau level appears to be insufficient.
We have investigated the properties of quarkonia in a thermal QCD medium in the background of strong magnetic field. For that purpose, we employ the Schwinger proper-time quark propagator in the lowest Landau level to calculate the one-loop gluon sel f-energy, which in the sequel gives the the effective gluon propagator. As an artifact of strong magnetic field approximation ($eB>>T^2$ and $eB>>m^2$), the Debye mass for massless flavors is found to depend only on the magnetic field which is the dominant scale in comparison to the scales prevalent in the thermal medium. However, for physical quark masses, it depends on both magnetic field and temperature in a low temperature and high magnetic field but the temperature dependence is very meagre and becomes independent of temperature beyond a certain temperature and magnetic field. With the above mentioned ingredients, the potential between heavy quark ($Q$) and anti-quark ($bar Q$) is obtained in a hot QCD medium in the presence of strong magnetic field by correcting both short and long range components of the potential in real-time formalism. It is found that the long range part of the quarkonium potential is affected much more by magnetic field as compared to the short range part. This observation facilitates us to estimate the magnetic field beyond which the potential will be too weak to bind $Qbar Q$ together. For example, the $J/psi$ is dissociated at $eB sim$ 10 $m_pi^2$ and $Upsilon$ is dissociated at $eB sim$ 100 $m_pi^2$ whereas its excited states, $psi^prime$ and $Upsilon^prime$ are dissociated at smaller magnetic field $eB= m_pi^2$, $13 m_pi^2$, respectively.
We discuss shallow resonances in the nonrelativistic scattering of two particles using an effective field theory (EFT) that includes an auxiliary field with the quantum numbers of the resonance. We construct the manifestly renormalized scattering amp litude up to next-to-leading order in a systematic expansion. For a narrow resonance, the amplitude is perturbative except in the immediate vicinity of the resonance poles. It naturally has a zero in the low-energy region, analogous to the Ramsauer-Townsend effect. For a broad resonance, the leading-order amplitude is nonperturbative almost everywhere in the regime of validity of the EFT. We regain the results of an EFT without the auxiliary field, which is equivalent to the effective-range expansion with large scattering length and effective range. We also consider an additional fine tuning leading to a low-energy amplitude zero even for a broad resonance. We show that in all cases the requirement of renormalizability when the auxiliary field is not a ghost ensures the resonance poles are in the lower half of the complex momentum plane, as expected by other arguments. The systematic character of the EFT expansion is exemplified with a toy model serving as underlying theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا