ﻻ يوجد ملخص باللغة العربية
Using a sample of 14 BeppoSAX and 74 Swift GRBs with measured redshift we tested the correlation between the intrinsic peak energy of the time-integrated spectrum, E_p,i, the isotropic-equivalent peak luminosity, L_p,iso, and the duration of the most intense parts of the GRB computed as T_0.45 (Firmani correlation). For 41 out of 88 GRBs we could estimate all of the three required properties. Apart from 980425, which appears to be a definite outlier and notoriously peculiar in many respects, we used 40 GRBs to fit the correlation with the maximum likelihood method discussed by DAgostini, suitable to account for the extrinsic scatter in addition to the intrinsic uncertainties affecting every single GRB. We confirm the correlation. However, unlike the results by Firmani et al., we found that the correlation does have a logarithmic scatter comparable with that of the E_p,i-E_iso (Amati) correlation. We also find that the slope of the product L_p,iso T_0.45 is equal to ~0.5, which is consistent with the hypothesis that the E_p,i-L_p,iso-T_0.45 correlation is equivalent to the E_p,i-E_iso correlation (slope ~0.5). We conclude that, based on presently available data, there is no clear evidence that the E_p,i-L_p,iso-T_0.45 correlation is different (both in terms of slope and dispersion) from the E_p,i-E_iso correlation.
We test the gamma-ray burst correlation between temporal variability and peak luminosity of the $gamma$-ray profile on a homogeneous sample of 36 Swift/BAT GRBs with firm redshift determination. This is the first time that this correlation can be tes
We use a nearly complete sample of Gamma Ray Bursts (GRBs) detected by the Swift satellite to study the correlations between the spectral peak energy Ep of the prompt emission, the isotropic energetics Eiso and the isotropic luminosity Liso. This GRB
We study the properties of the population of optically dark events present in a carefully selected complete sample of bright Swift long gamma-ray bursts. The high level of completeness in redshift of our sample (52 objects out of 58) allow us to esta
We present a carefully selected sub-sample of Swift Long Gamma-ray Bursts (GRBs), that is complete in redshift. The sample is constructed by considering only bursts with favorable observing conditions for ground-based follow-up searches, that are bri
In several gamma-ray bursts (GRBs) excess emission, in addition to the standard synchrotron afterglow spectrum, has been discovered in the early time X-ray observations. It has been proposed that this excess comes from black body emission, which may