ترغب بنشر مسار تعليمي؟ اضغط هنا

Factorization in categories of systems of linear partial differential equations

92   0   0.0 ( 0 )
 نشر من قبل Sergey Tsarev P.
 تاريخ النشر 2008
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف S.P. Tsarev




اسأل ChatGPT حول البحث

We start with elementary algebraic theory of factorization of linear ordinary differential equations developed in the period 1880-1930. After exposing these classical results we sketch more sophisticated algorithmic approaches developed in the last 20 years. The main part of this paper is devoted to modern generalizations of the notion of factorization to the case of systems of linear partial differential equations and their relation with explicit solvability of nonlinear partial differential equations based on some constructions from the theory of abelian categories.

قيم البحث

اقرأ أيضاً

The paper deals with a formally self-adjoint first order linear differential operator acting on m-columns of complex-valued half-densities over an n-manifold without boundary. We study the distribution of eigenvalues in the elliptic setting and the p ropagator in the hyperbolic setting, deriving two-term asymptotic formulae for both. We then turn our attention to the special case of a two by two operator in dimension four. We show that the geometric concepts of Lorentzian metric, Pauli matrices, spinor field, connection coefficients for spinor fields, electromagnetic covector potential, Dirac equation and Dirac action arise naturally in the process of our analysis.
Mahler equations relate evaluations of the same function $f$ at iterated $b$th powers of the variable. They arise in particular in the study of automatic sequences and in the complexity analysis of divide-and-conquer algorithms. Recently, the problem of solving Mahler equations in closed form has occurred in connection with number-theoretic questions. A difficulty in the manipulation of Mahler equations is the exponential blow-up of degrees when applying a Mahler operator to a polynomial. In this work, we present algorithms for solving linear Mahler equations for series, polynomials, and rational functions, and get polynomial-time complexity under a mild assumption. Incidentally, we develop an algorithm for computing the gcrd of a family of linear Mahler operators.
260 - Lucas Izydorczyk 2019
This paper presents a partial state of the art about the topic of representation of generalized Fokker-Planck Partial Differential Equations (PDEs) by solutions of McKean Feynman-Kac Equations (MFKEs) that generalize the notion of McKean Stochastic D ifferential Equations (MSDEs). While MSDEs can be related to non-linear Fokker-Planck PDEs, MFKEs can be related to non-conservative non-linear PDEs. Motivations come from modeling issues but also from numerical approximation issues in computing the solution of a PDE, arising for instance in the context of stochastic control. MFKEs also appear naturally in representing final value problems related to backward Fokker-Planck equations.
In this paper, we introduce the concept of Developmental Partial Differential Equation (DPDE), which consists of a Partial Differential Equation (PDE) on a time-varying manifold with complete coupling between the PDE and the manifolds evolution. In o ther words, the manifolds evolution depends on the solution to the PDE, and vice versa the differential operator of the PDE depends on the manifolds geometry. DPDE is used to study a diffusion equation with source on a growing surface whose growth depends on the intensity of the diffused quantity. The surface may, for instance, represent the membrane of an egg chamber and the diffused quantity a protein activating a signaling pathway leading to growth. Our main objective is to show controllability of the surface shape using a fixed source with variable intensity for the diffusion. More specifically, we look for a control driving a symmetric manifold shape to any other symmetric shape in a given time interval. For the diffusion we take directly the Laplace-Beltrami operator of the surface, while the surface growth is assumed to be equal to the value of the diffused quantity. We introduce a theoretical framework, provide approximate controllability and show numerical results. Future applications include a specific model for the oogenesis of Drosophila melanogaster.
In this review paper, we explain how to apply Renormalization Group ideas to the analysis of the long-time asymptotics of solutions of partial differential equations. We illustrate the method on several examples of nonlinear parabolic equations. We d iscuss many applications, including the stability of profiles and fronts in the Ginzburg-Landau equation, anomalous scaling laws in reaction-diffusion equations, and the shape of a solution near a blow-up point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا