ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on Brane Inflation and Cosmic Strings

27   0   0.0 ( 0 )
 نشر من قبل Horace Stoica
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By considering simple, but representative, models of brane inflation from a single brane-antibrane pair in the slow roll regime, we provide constraints on the parameters of the theory imposed by measurements of the CMB anisotropies by WMAP including a cosmic string component. We find that inclusion of the string component is critical in constraining parameters. In the most general model studied, which includes an inflaton mass term, as well as the brane-antibrane attraction, values n_s < 1.02 are compatible with the data at 95 % confidence level. We are also able to constrain the volume of internal manifold (modulo factors dependent on the warp factor) and the value of the inflaton field to be less than 0.66M_P at horizon exit. We also investigate models with a mass term. These observational considerations suggest that such models have r < 2*10^-5, which can only be circumvented in the fast roll regime, or by increasing the number of antibranes. Such a value of r would not be detectable in CMB polarization experiment likely in the near future, but the B-mode signal from the cosmic strings could be detectable. We present forecasts of what a similar analysis using PLANCK data would yield and find that it should be possible to rule out Gmu > 6.5*10^-8 using just the TT, TE and EE power spectra.

قيم البحث

اقرأ أيضاً

We investigate the primordial phase of the Universe in the context of brane inflation modeled by Bogomolnyi-Prasad-Sommerfield (BPS) domain walls solutions of a bosonic sector of a 5D supergravity inspired theory. The solutions are embedded into five dimensions and it is assumed that they interact with each other due to elastic particle collisions in the bulk. A four-dimensional arctan-type inflaton potential drives the accelerated expansion phase and predicts observational quantities in good agreement with the currently available Cosmic Microwave Background data.
Recent BICEP2 detection of low-multipole B-mode polarization anisotropy in the cosmic microwave background radiation supports the inflationary universe scenario and suggests a large inflaton field range. The latter feature can be achieved with axion fields in the framework of string theory. We present such a helical model which naturally becomes a model with a single cosine potential, and which in turn reduces to the (quadratic) chaotic inflation model in the super-Planckian limit. The slightly smaller tensor/scalar ratio $r$ of models of this type provides a signature of the periodic nature of an axion potential. We present a simple way to quantify this distinctive feature. As axions are intimately related to strings/vortices and strings are ubiquitous in string theory, we explore the possibility that cosmic strings may be contributing to the B-mode polarization anisotropy observed.
We investigate the cosmological and astrophysical constraints on superconducting cosmic strings (SCSs). SCS loops emit strong bursts of electromagnetic waves, which might affect various cosmological and astrophysical observations. We take into accoun t the effect on the CMB anisotropy, CMB blackbody spectrum, BBN, observational implications on radio wave burst and X-ray or gamma-ray events, and stochastic gravitational wave background measured by pulsar timing experiments. We then derive constraints on the parameters of SCS from current observations and estimate prospects for detecting SCS signatures in on-going observations. As a result, we find that these constraints exclude broad parameter regions, and also that on-going radio wave observations can probe large parameter space.
In this work we study the imprints of a primordial cosmic string on inflationary power spectrum. Cosmic string induces two distinct contributions on curvature perturbations power spectrum. The first type of correction respects the translation invaria nce while violating isotropy. This generates quadrupolar statistical anisotropy in CMB maps which is constrained by the Planck data. The second contribution breaks both homogeneity and isotropy, generating a dipolar power asymmetry in variance of temperature fluctuations with its amplitude falling on small scales. We show that the strongest constraint on the tension of string is obtained from the quadrupolar anisotropy and argue that the mass scale of underlying theory responsible for the formation of string can not be much higher than the GUT scale. The predictions of string for the diagonal and off-diagonal components of CMB angular power spectrum are presented.
We present a successful realization of sneutrino tribrid inflation model based on a gauged $U(1)_{B-L}$ extension of Minimal Supersymmetric Standard Model (MSSM). A single interaction term involving the $B-L$ Higgs field and the right-handed neutrino s serves multiple purposes. These include the generation of heavy Majorana masses for the right-handed neutrinos to provide an explanation for the tiny neutrino masses via the seesaw mechanism, a realistic scenario for reheating and non-thermal leptogenesis with a reheat temperature as low as $10^6$ GeV, and a successful realization of inflation with right-handed sneutrino as the inflaton. The matter parity which helps avoid rapid proton decay survives as a $Z_{2}$ subgroup of a $U(1)$ $R$-symmetry. Depending on the choice of model parameters yields the following predicted range of the tensor to scalar ratio, $3 times 10^{-11}lesssim rlesssim 7times 10^{-4}$ ($ 6 times 10^{-7} lesssim r lesssim 0.01 $), and the running of the scalar spectral index, $-0.00022 lesssim dn_s/dln k lesssim -0.0026$ ($-0.00014 lesssim dn_s/dln k lesssim 0.005$), along with the $B-L$ breaking scale, $ 3 times 10^{14}lesssim M/ text{GeV}lesssim 5 times 10^{15}$ ($ 6 times 10^{15}lesssim M/ text{GeV}lesssim 2 times 10^{16}$), calculated at the central value of the scalar spectral index, $n_s =0.966$, reported by Planck 2018. The possibility of realizing metastable cosmic strings in a grand unified theory setup is briefly discussed. The metastable cosmic string network admits string tension values in the range $10^{-8} lesssim Gmu_s lesssim 10^{-6}$, and predicts a stochastic gravitational wave background lying within the 2-$sigma$ bounds of the recent NANOGrav 12.5-yr data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا