ترغب بنشر مسار تعليمي؟ اضغط هنا

New insight into cataract formation -- enhanced stability through mutual attraction

36   0   0.0 ( 0 )
 نشر من قبل Giuseppe Foffi
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Small-angle neutron scattering experiments and molecular dynamics simulations combined with an application of concepts from soft matter physics to complex protein mixtures provide new insight into the stability of eye lens protein mixtures. Exploring this colloid-protein analogy we demonstrate that weak attractions between unlike proteins help to maintain lens transparency in an extremely sensitive and non-monotonic manner. These results not only represent an important step towards a better understanding of protein condensation diseases such as cataract formation, but provide general guidelines for tuning the stability of colloid mixtures, a topic relevant for soft matter physics and industrial applications.

قيم البحث

اقرأ أيضاً

The enhancement of mobility at the surface of an amorphous alloy is studied using a combination of molecular dynamic simulations and normal mode analysis of the non-uniform distribution of Debye-Waller factors. The increased mobility at the surface i s found to be associated with the appearance of Arrhenius temperature dependence. We show that the transverse Debye-Waller factor exhibits a peak at the surface. Over the accessible temperature range, we find that the bulk and surface diffusion coefficients obey the same empirical relationship with the respective Debye-Waller factors. Extrapolating this relationship to lower T, we argue that the observed decrease in the constraint at the surface is sufficient to account for the experimentally observed surface enhancement of mobility.
We report on experiments that probe the stability of a two-dimensional jammed granular system formed by imposing a quasistatic simple shear strain $gamma_{rm I}$ on an initially stress free packing. We subject the shear jammed system to quasistatic c yclic shear with strain amplitude $deltagamma$. We observe two distinct outcomes after thousands of shear cycles. For small $gamma_{rm I}$ or large $deltagamma$, the system reaches a stress-free, yielding state exhibiting diffusive strobed particle displacements with a diffusion coefficient proportional to $deltagamma$. For large $gamma_{rm I}$ and small $deltagamma$, the system evolves to a stable state in which both particle positions and contact forces are unchanged after each cycle and the response to small strain reversals is highly elastic. Compared to the original shear jammed state, a stable state reached after many cycles has a smaller stress anisotropy, a much higher shear stiffness, and less tendency to dilate when sheared. Remarkably, we find that stable states show a power-law relation between shear modulus and pressure with an exponent $betaapprox 0.5$, independent of $deltagamma$. Based on our measurements, we construct a phase diagram in the $(gamma_{rm I},deltagamma)$ plane showing where our shear-jammed granular materials either stabilize or yield in the long-time limit.
We report the results of 151Eu Moessbauer effect and magnetization measurements in the Eu-doped Ca3Co2O6 and Ca3CoRhO6, which are of great current interest in the fields of spin-chain magnetism and geometrical frustration. We find that there is a pro nounced increase in the line-width of the Moessbauer spectra below a certain characteristic temperature which is well-above the one at which three-diensional ordering features set in. This unusual broadening of the spectra indicates the existence of a characteristic temperature in these exotic magnetic systems, attributable to the onset of incipient one-dimensional magnetic order. This is inferred from an intriguing correlation of this characteristic temperature with the paramagnetic Curie temperature (a measure of intrachain coupling strength in these cases).
We study the effect of citrate to gold molar ratio (X) on the size of citrated gold nanoparticles (AuNPs). This dependence is still a matter of debate for X $ge$ 3 where the polydispersity is yet minimized. Indeed, there is no consensus between exper iments proposed so far for comparable experimental conditions. Nonetheless, the sole available theoretical prediction has never been validated experimentally in this range of X. We show unambiguously using 3 techniques (UV-Vis spectroscopy, dynamic light scattering and transmission electronic microscopy), 2 different synthetic approaches (Direct, Inverse) and 10 X values for each approach that AuNPs size decay as a monoexponential with X. This result is, for the first time, in agreement with the sole available theoretical prediction by Kumar et al. on the whole studied range of X.
It is often desirable to enhance the motility of active nano- or microscale swimmers such as, e.g., self-propelled Janus particles as agents of chemical reactions or weak sperm cells for better chances of successful fertilization. Here we tackle this problem based on the idea that motility can be transferred from a more active guest species to a less active host species. We performed numerical simulations of motility transfer in two typical cases, namely for interacting particles with weak inertia effect, by analyzing their velocity distributions, and for interacting overdamped particles, by studying their effusion rate. In both cases we detected motility transfer with a motility enhancement of the host species of up to a factor of four. This technique of motility enhancement can find applications in chemistry, biology and medicine.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا