ﻻ يوجد ملخص باللغة العربية
Dynamics near the grazing manifold and basins of attraction for a motion of a material point in a gravitational field, colliding with a moving motion-limiting stop, are investigated. The Poincare map, describing evolution from an impact to the next impact, is derived. Periodic points are found and their stability is determined. The grazing manifold is computed and dynamics is approximated in its vicinity. It is shown that on the grazing manifold there are trapping as well as forbidden regions. Finally, basins of attraction are studied.
This article discusses dependence on initial conditions in natural and social sciences with focus on physical science. The main focus is on the newly discovered rough dependence on initial data.
Dependence of the transient process duration on the initial conditions is considered in one- and two-dimensional systems with discrete time, representing a logistic map and the Eno map, respectively.
We set the formalism to study the way in which the choice of canonical equilibrium initial conditions affect the real-time dynamics of quantum disordered models. We use a path integral formulation on a time contour with real and imaginary time branch
We investigate the chaotic behaviour of multiparticle systems, in particular DNA and graphene models, by applying methods of nonlinear dynamics. Using symplectic integration techniques, we present an extensive analysis of chaos in the Peyrard-Bishop-
In this paper we study the problem of inferring the initial conditions of a dynamical system under incomplete information. Studying several model systems, we infer the latent microstates that best reproduce an observed time series when the observatio