ﻻ يوجد ملخص باللغة العربية
In two recent articles, Meiser and Meystre describe the coupled dynamics of a dense gas of atoms and an optical cavity pumped by a laser field. They make two important simplifying assumptions: (i) the gas of atoms forms a regular lattice and can be replaced by a fictitious mirror, and (ii) the atoms strive to minimize the dipole potential. We show that the two assumptions are inconsistent: the configuration of atoms minimizing the dipole potential is not a perfect lattice. Assumption (ii) is erroneous, as in the strong coupling regime the dipole force does not arise from the dipole potential. The real steady state, where the dipole forces vanish, is indeed a regular lattice. Furthermore, the bistability predicted by Meiser and Meystre does not occur in this system.
Light is known to exert a pushing force through the radiation pressure on any surface it is incident upon, via the transfer of momentum from the light to the surface. For an atom, the interaction with light can lead to both absorption as well as emis
We demonstrate the existence of new nonclassical correlations in the radiation of two atoms, which are coherently driven by a continuous laser source. The photon-photon-correlations of the fluorescence light show a spatial interferene pattern not pre
We experimentally investigate the spin dynamics of one and two neutral atoms strongly coupled to a high finesse optical cavity. We observe quantum jumps between hyperfine ground states of a single atom. The interaction-induced normal mode splitting o
We experimentally and theoretically investigate collective radiative effects in an ensemble of cold atoms coupled to a single-mode optical nanofiber. Our analysis unveils the microscopic dynamics of the system, showing that collective interactions be
In this Comment we show that the temperature-dependent effective Hamiltonian derived by Reslen {it et al} [Europhys. Lett., {bf 69} (2005) 8] or that one by Liberti and Zaffino [arXiv:cond-mat/0503742] for the Dicke model cannot be correct for any te