ترغب بنشر مسار تعليمي؟ اضغط هنا

Comment on ``Coupled dynamics of atoms and radiation--pressure--driven interferometers

193   0   0.0 ( 0 )
 نشر من قبل J\\'anos K. Asb\\'oth
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In two recent articles, Meiser and Meystre describe the coupled dynamics of a dense gas of atoms and an optical cavity pumped by a laser field. They make two important simplifying assumptions: (i) the gas of atoms forms a regular lattice and can be replaced by a fictitious mirror, and (ii) the atoms strive to minimize the dipole potential. We show that the two assumptions are inconsistent: the configuration of atoms minimizing the dipole potential is not a perfect lattice. Assumption (ii) is erroneous, as in the strong coupling regime the dipole force does not arise from the dipole potential. The real steady state, where the dipole forces vanish, is indeed a regular lattice. Furthermore, the bistability predicted by Meiser and Meystre does not occur in this system.

قيم البحث

اقرأ أيضاً

Light is known to exert a pushing force through the radiation pressure on any surface it is incident upon, via the transfer of momentum from the light to the surface. For an atom, the interaction with light can lead to both absorption as well as emis sion of photons, leading to repulsive and attractive forces, respectively. For classical light, these two processes occur at the same rates. Therefore, a thermal ensemble of atoms at a finite temperature always experiences a net pushing force. In this paper, we show that when treated quantum mechanically the pulsed electromagnetic field interacting with the thermal ensemble of atoms leads to unequal transition rates, again resulting in a non-zero net force. However, the signature and the magnitude of the force depends upon the intensity of the light, the number of atoms, and the initial temperature of the ensemble. Thus, even at finite temperature, controlling the parameters of the electromagnetic pulse and the number of particles in the ensemble, the net force can be changed from repulsive to attractive, generating negative radiation pressure in the process. Quite counterintuitively, this negative radiation pressure arising out of pure quantum character of light gets stronger for higher temperatures.
60 - C. Skornia 2001
We demonstrate the existence of new nonclassical correlations in the radiation of two atoms, which are coherently driven by a continuous laser source. The photon-photon-correlations of the fluorescence light show a spatial interferene pattern not pre sent in a classical treatment. A feature of the new phenomenon is, that bunched and antibunched light is emitted in different spatial directions. The calculations are performed analytically. It is pointed out, that the correlations are induced by state reduction due to the measurement process when the detection of the photons does not distinguish between the atoms. It is interesting to note, that the phenomena show up even without any interatomic interaction.
We experimentally investigate the spin dynamics of one and two neutral atoms strongly coupled to a high finesse optical cavity. We observe quantum jumps between hyperfine ground states of a single atom. The interaction-induced normal mode splitting o f the atom-cavity system is measured via the atomic excitation. Moreover, we observe evidence for conditional dynamics of two atoms simultaneously coupled to the cavity mode. Our results point towards the realization of measurement-induced entanglement schemes for neutral atoms in optical cavities.
We experimentally and theoretically investigate collective radiative effects in an ensemble of cold atoms coupled to a single-mode optical nanofiber. Our analysis unveils the microscopic dynamics of the system, showing that collective interactions be tween the atoms and a single guided photon gradually build-up along the atomic array in the direction of propagation of light. These results are supported by time-resolved measurements of the light transmitted and reflected by the ensemble after excitation via nanofiber-guided laser pulses, whose rise and fall times are shorter than the atomic lifetime. Superradiant decays more than one order of magnitude faster than the single-atom free-space decay rate are observed for emission in the forward-propagating guided mode, while at the same time no speed-up of the decay rate are measured in the backward direction. In addition, position-resolved measurements of the light that is transmitted past the atoms are performed by inserting the nanofiber-coupled atomic array in a 45-m long fiber ring-resonator, which allow us to experimentally reveal the progressive growth of the collective response of the atomic ensemble. Our results highlight the unique opportunities offered by nanophotonic cold atom systems for the experimental investigation of collective light-matter interaction.
In this Comment we show that the temperature-dependent effective Hamiltonian derived by Reslen {it et al} [Europhys. Lett., {bf 69} (2005) 8] or that one by Liberti and Zaffino [arXiv:cond-mat/0503742] for the Dicke model cannot be correct for any te mperature. They both violate a rigorous result. The former is correct only in the quantum (zero-temperature) limit while the last one only in the classical (infinite temperature) limit. The fact that the Dicke model belongs to the universality class of the infinitely coordinated transverse-field XY model is known for more then 30 years.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا