ترغب بنشر مسار تعليمي؟ اضغط هنا

Chemical chronology of the Southern Coalsack

118   0   0.0 ( 0 )
 نشر من قبل Steve Rodgers
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. D. Rodgers




اسأل ChatGPT حول البحث

We demonstrate how the observed H2O ice column densities toward three dense globules in the Southern Coalsack could be used to constrain the ages of these sources. We derive ages of ~10^5 yr, in agreement with dynamical studies of these objects. We have modelled the chemical evolution of the globules, and show how the molecular abundances are controlled by both the gas density and the initial chemical conditions as the globules formed. Based on our derived ages, we predict the column densities of several species of interest. These predictions should be straightforward to test by performing molecular line observations

قيم البحث

اقرأ أيضاً

The results of a spectroscopic programme aiming to investigate the kinematics of the local interstellar medium components towards the Southern Coalsack and Chamaeleon-Musca dark clouds are presented. The analysis is based upon high-resolution (R ~ 60 ,000) spectra of the insterstellar NaI D absorption lines towards 63 B-type stars (d < 500 pc) selected to cover these clouds and the connecting area defined by the Galactic coordinates: 308 > l > 294 and -22 < b < 5. The radial velocities, column densities, velocity dispersions, colour excess and photometric distances to the stars are used to understand the kinematics and distribution of the interstellar cloud components. The analysis indicates that the interstellar gas is distributed in two extended sheet-like structures permeating the whole area, one at d < 60 pc and another around 120-150 pc from the Sun. The dust and gas feature around 120-150 pc seem to be part of an extended large scale feature of similar kinematic properties, supposedly identified with the interaction zone of the Local and Loop I bubbles.
61 - Naiping Yu , Jinlong Xu 2017
Red Midcourse Space Experiment (MSX) Sources (RMSs) are regarded as excellent candidates of massive starforming regions. In order to characterize the chemical properties of massive star formation, we made a systematic study of 87 RMSs in the southern sky, using archival data taken from the Atacama Pathfinder Experiment Telescope Large Area Survey of the Galaxy (ATLASGAL), the Australia Telescope Compact Array, and the Millimetre Astronomy Legacy Team Survey at 90 GHz (MALT90). According to previous multiwavelength observations, our sample could be divided into two groups: massive young stellar objects and H II regions. Combined with the MALT90 data, we calculated the column densities of N2H+, C2H, HC3N, and HNC and found that they are not much different from previous studies made in other massive star-forming regions. However, their abundances are relatively low compared to infrared dark clouds (IRDCs). The abundances of N2H+ and HNC in our sample are at least 1 mag lower than those found in IRDCs, indicating chemical depletions in the relatively hot gas. Besides, the fractional abundances of N2H+, C2H, and HC3N seem to decrease as a function of their Lyman continuum fluxes (NL), indicating that these molecules could be destroyed by UV photons when H II regions have formed inside. We also find that the C2H abundance decreases faster than HC3N with respect to NL. The abundance of HNC has a tight correlation with that of N2H+, indicating that it may be also preferentially formed in cold gas. We regard our RMSs as being in a relatively late evolutionary stage of massive star formation.
We have conducted J, H, and Ks imaging observations for the Coalsack Globule 2 with the SIRIUS infrared camera on the IRSF 1.4 m telescope at SAAO, and determined the color excess ratio, E(J-H)/E(H-Ks). The ratio is determined in the same photometric system as our previous study for the rho Oph and Cha clouds without any color transformation; this enables us to directly compare the near-infrared extinction laws among these regions. The current ratio E(J-H)/E(H-Ks) = 1.91 +- 0.01 for the extinction range 0.5 < E(J-H) <1.8 is significantly larger than the ratios for the rho Oph and Cha clouds (E(J-H)/E(H-Ks) = 1.60-1.69). This ratio corresponds to a large negative index alpha = 2.34 +- 0.01 when the wavelength dependence of extinction is approximated by a power law which might indicate little growth of dust grains, or larger abundance of dielectric non-absorbing components such as silicates, or both in this cloud. We also confirm that the color excess ratio for the Coalsack Globule 2 has a trend of increasing with decreasing optical depth, which is the same trend as the rho Oph and Cha clouds have.
The space and time configurations of the dissociation of $^8$He into $^6$He+$n$+$n$, on C and Pb targets, have been explored simultaneously for the first time. The final-state interactions in the $n$-$n$ and $^6$He-$n$ channels are successfully descr ibed within a model that considers independent emission of neutrons from a Gaussian volume with a given lifetime. The dissociation on C target exhibits a dominant sequential decay through the ground state of $^7$He, consistent with neutrons being emitted from a Gaussian volume of $r_{nn}^{rm{rms}}=7.3pm0.6$~fm with a $n$-$n$ delay in the sequential channel of $1400pm400$~fm/$c$, in agreement with the lifetime of $^7$He. The lower-statistics data on Pb target correspond mainly to direct breakup, and are well described using the $n$-$n$ volume measured, without any $n$-$n$ delay. The validity of the phenomenological model used is discussed.
We present high-resolution Magellan/MIKE spectroscopy of 42 red giant stars in seven stellar streams confirmed by the Southern Stellar Stream Spectroscopic Survey (S5): ATLAS, Aliqa Uma, Chenab, Elqui, Indus, Jhelum, and Phoenix. Abundances of 30 ele ments have been derived from over 10,000 individual line measurements or upper limits using photometric stellar parameters and a standard LTE analysis. This is currently the most extensive set of element abundances for stars in stellar streams. Three streams (ATLAS, Aliqa Uma, and Phoenix) are disrupted metal-poor globular clusters, although only weak evidence is seen for the light element anticorrelations commonly observed in globular clusters. Four streams (Chenab, Elqui, Indus, and Jhelum) are disrupted dwarf galaxies, and their stars display abundance signatures that suggest progenitors with stellar masses ranging from $10^6-10^7 M_odot$. Extensive description is provided for the analysis methods, including the derivation of a new method for including the effect of stellar parameter correlations on each stars abundance and uncertainty. This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا