ترغب بنشر مسار تعليمي؟ اضغط هنا

Mixed chemistry phenomenon during late stages of stellar evolution

137   0   0.0 ( 0 )
 نشر من قبل Ryszard Szczerba
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss phenomenon of simultaneous presence of O- and C-based material in surroundings of evolutionary advanced stars. We concentrate on silicate carbon stars and present observations that directly confirm the binary model scenario for them. We discuss also class of C-stars with OH emission detected, to which some [WR] planetary nebulae do belong.

قيم البحث

اقرأ أيضاً

66 - Leen Decin 2012
Cool objects glow in the infrared. The gas and solid-state species that escape the stellar gravitational attraction of evolved late-type stars in the form of a stellar wind are cool, with temperatures typically $la$1500,K, and can be ideally studied in the infrared. These stellar winds create huge extended circumstellar envelopes with extents approaching $10^{19}$,cm. In these envelopes, a complex kinematical, thermodynamical and chemical interplay determines the global and local structural parameters. Unraveling the wind acceleration mechanisms and deriving the complicated structure of the envelopes is important to understand the late stages of evolution of ~97% of stars in galaxies as our own Milky Way. That way, we can also assess the significant chemical enrichment of the interstellar medium by the mass loss of these evolved stars. The Herschel Space Observatory is uniquely placed to study evolved stars thanks to the excellent capabilities of the three infrared and sub-millimeter instruments on board: PACS, SPIRE and HIFI. In this review, I give an overview of a few important results obtained during the first two years of Herschel observations in the field of evolved low and intermediate mass stars, and I will show how the Herschel observations can solve some historical questions on these late stages of stellar evolution, but also add some new ones.
Recent advances in our understanding of the dynamical history of the Solar system have altered the inferred bombardment history of the Earth during accretion of the Late Veneer, after the Moon-forming impact. We investigate how the bombardment by pla netesimals left-over from the terrestrial planet region after terrestrial planet formation, as well as asteroids and comets, affects the evolution of Earths early atmosphere. We develop a new statistical code of stochastic bombardment for atmosphere evolution, combining prescriptions for atmosphere loss and volatile delivery derived from hydrodynamic simulations and theory with results from dynamical modelling of realistic populations of impactors. We find that for an initially Earth-like atmosphere impacts cause moderate atmospheric erosion with stochastic delivery of large asteroids giving substantial growth ($times 10$) in a few $%$ of cases. The exact change in atmosphere mass is inherently stochastic and dependent on the dynamics of the left-over planetesimals. We also consider the dependence on unknowns including the impactor volatile content, finding that the atmosphere is typically completely stripped by especially dry left-over planetesimals ($<0.02 ~ %$ volatiles). Remarkably, for a wide range of initial atmosphere masses and compositions, the atmosphere converges towards similar final masses and compositions, i.e. initially low mass atmospheres grow whereas massive atmospheres deplete. While the final properties are sensitive to the assumed impactor properties, the resulting atmosphere mass is close to that of current Earth. The exception to this is that a large initial atmosphere cannot be eroded to the current mass unless the atmosphere was initially primordial in composition.
We compute and analyze the evolution of primordial stars of masses at the ZAMS between 5 M_sun and 10 M_sun, with and without overshooting. Our main goals are to determine the nature of the remnants of massive intermediate-mass primordial stars and t o check the influence of overshooting in their evolution. Our calculations cover stellar evolution from the main sequence phase until the formation of the degenerate cores and the thermally pulsing phase. We have obtained the values for the limiting masses of Population III progenitor stars leading to carbon-oxygen and oxygen-neon compact cores. Moreover, we have also obtained the limiting mass for which isolated primordial stars would lead to core-collapse supernovae after the end of the main central burning phases. Considering a moderate amount of overshooting the mass thresholds at the ZAMS for the formation of carbon-oxygen and oxygen-neon degenerate cores shifts to smaller values by about 2 M_sun. As a by-product of our calculations, we have also obtained the structure and composition profiles of the resulting compact remnants. Opposite to what happens with solar metallicity objects, the final fate of primordial stars is not straightforward determined from the mass of the compact cores at the end of carbon burning. Instead, the small mass-loss rates typically associated to stellar winds of low metallicity stars might allow the growth of the resulting degenerate cores up to the Chandrasekhar mass, on time scales one or two orders of magnitude shorter than the time required to loose the envelope. This would lead to the formation of supernovae for initial masses as small as about 5 M_sun.
136 - Sayan Chakraborti 2015
Massive stars shape their surroundings with mass loss from winds during their lifetimes. Fast ejecta from supernovae, from these massive stars, shocks this circumstellar medium. Emission generated by this interaction provides a window into the final stages of stellar evolution, by probing the history of mass loss from the progenitor. Here we use Chandra and Swift x-ray observations of the type II-P/L SN 2013ej to probe the history of mass loss from its progenitor. We model the observed x-rays as emission from both heated circumstellar matter and supernova ejecta. The circumstellar density profile probed by the supernova shock reveals a history of steady mass loss during the final 400 years. The inferred mass loss rate of $3 times 10^{-6} {rm ; M_odot ; yr^{-1}}$ points back to a 14 $M_odot$ progenitor. Soon after the explosion we find significant absorption of reverse shock emission by a cooling shell. The column depth of this shell observed in absorption provides an independent and consistent measurement of the circumstellar density seen in emission. We also determine the efficiency of cosmic ray acceleration from x-rays produced by Inverse Compton scattering of optical photons by relativistic electrons. Only about 1 percent of the thermal energy is used to accelerate electrons. Our x-ray observations and modeling provides stringent tests for models of massive stellar evolution and micro-physics of shocks.
Disks are ubiquitous in stellar astronomy, and play a crucial role in the formation and evolution of stars. In this contribution we present an overview of the most recent results, with emphasis on high spatial and spectral resolution. We will start w ith a general discussion on direct versus indirect detection of disks, and then traverse the HR diagram starting with the pre-Main Sequence and ending with evolved stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا