ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum superposition of multiple clones and the novel cloning machine

353   0   0.0 ( 0 )
 نشر من قبل Dr. Arun Kumar Pati
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Arun Kumar Pati




اسأل ChatGPT حول البحث

we envisage a novel quantum cloning machine, which takes an input state and produces an output state whose success branch can exist in a linear superposition of multiple copies of the input state and the failure branch exist in a superposition of composite state independent of the input state. We prove that unknown non-orthogonal states chosen from a set $cal S$ can evolve into a linear superposition of multiple clones by a unitary process if and only if the states are linearly independent. We derive a bound on the success probability of the novel cloning machine. We argue that the deterministic and probabilistic clonings are special cases of our novel cloning machine.



قيم البحث

اقرأ أيضاً

The high resilience to de-coherence shown by a recently discovered Macroscopic Quantum Superposition (MQS) generated by a quantum injected optical parametric amplifier (QI-OPA) and involving a number of photons in excess of 5x10^4 motivates the prese nt theoretical and numerical investigation. The results are analyzed in comparison with the properties of the MQS based on coherent states and NOON states, in the perspective of the comprehensive theory of the subject by W.H.Zurek. In that perspective the concepts of pointer state, einselection are applied to the new scheme.
Quantum no-cloning, the impossibility of perfectly cloning an arbitrary unknown quantum state, is one of the most fundamental limitations due to the laws of quantum mechanics, which underpin the physical security of quantum key distribution. Quantum physics does allow, however, approximate cloning with either imperfect state fidelity and/or probabilistic success. Whereas approximate quantum cloning of single-particle states has been tested previously, experimental cloning of quantum entanglement -- a highly non-classical correlation -- remained unexplored. Based on a multiphoton linear optics platform, we demonstrate quantum cloning of two photon entangled states for the first time. Remarkably our results show that one maximally entangled photon pair can be broadcast into two entangled pairs, both with state fidelities above 50%. Our results are a key step towards cloning of complex quantum systems, and are likely to provide new insights into quantum entanglement.
Models for quantum computation with circuit connections subject to the quantum superposition principle have been recently proposed. There, a control quantum system can coherently determine the order in which a target quantum system undergoes $N$ gate operations. This process, known as the quantum $N$-switch, is a resource for several information-processing tasks. In particular, it provides a computational advantage -- over fixed-gate-order quantum circuits -- for phase-estimation problems involving $N$ unknown unitary gates. However, the corresponding algorithm requires an experimentally unfeasible target-system dimension (super)exponential in $N$. Here, we introduce a promise problem for which the quantum $N$-switch gives an equivalent computational speed-up with target-system dimension as small as 2 regardless of $N$. We use state-of-the-art multi-core optical-fiber technology to experimentally demonstrate the quantum $N$-switch with $N=4$ gates acting on a photonic-polarization qubit. This is the first observation of a quantum superposition of more than $N=2$ temporal orders, demonstrating its usefulness for efficient phase-estimation.
An application of quantum cloning to optimally interface a quantum system with a classical observer is presented, in particular we describe a procedure to perform a minimal disturbance measurement on a single qubit by adopting a 1->2 cloning machine followed by a generalized measurement on a single clone and the anti-clone or on the two clones. Such scheme has been applied to enhance the transmission fidelity over a lossy quantum channel.
In a classical world, simultaneous measurements of complementary properties (e.g. position and momentum) give a systems state. In quantum mechanics, measurement-induced disturbance is largest for complementary properties and, hence, limits the precis ion with which such properties can be determined simultaneously. It is tempting to try to sidestep this disturbance by copying the system and measuring each complementary property on a separate copy. However, perfect copying is physically impossible in quantum mechanics. Here, we investigate using the closest quantum analog to this copying strategy, optimal cloning. The coherent portion of the generated clones state corresponds to twins of the input system. Like perfect copies, both twins faithfully reproduce the properties of the input system. Unlike perfect copies, the twins are entangled. As such, a measurement on both twins is equivalent to a simultaneous measurement on the input system. For complementary observables, this joint measurement gives the systems state, just as in the classical case. We demonstrate this experimentally using polarized single photons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا