ﻻ يوجد ملخص باللغة العربية
It has been suggested that the locality of information transfer in quantum entanglement indicates that reality is subjective, meaning that there is an innate inseparability between the physical system and the conscious mind of the observer. This paper attempts to outline the relation between macroscopic and microscopic worlds in the measurement process in regards to whether observation creates reality. Indeed, the Maxwells demon thought experiment suggests a correlation between a microscopic (quantum) system and a macroscopic (classical) apparatus, which leads to an energy transfer from the quantum vacuum to the physical world, similar to particle creation from a vacuum. This explanation shows that observation in quantum theory conserves, rather than creates, energy.
Protective measurement refers to two related schemes for finding the expectation value of an observable without disturbing the state of a quantum system, given a single copy of the system that is subject to a protecting operation. There have been sev
Unperformed measurements have no results. Unobserved results can affect future measurements.
We use deep HST/ACS F555W and F814W photometry of resolved stars in the M81 Group dwarf irregular galaxy Ho II to study the hypothesis that the holes identified in the neutral ISM (HI) are created by stellar feedback. From the deep photometry, we con
Quantum theory describes our universe incredibly successfully. To our classically-inclined brains, however, it is a bizarre description that requires a re-imagining of what fundamental reality, or ontology, could look like. This thesis examines diffe
It is shown that the nature of quantum states that emerge from decoherence is such that one can {em measure} the expectation value of any observable of the system in a single measurement. This can be done even when such pointer states are a priori un