ﻻ يوجد ملخص باللغة العربية
I show how to perform a Loschmidt echo (time reversal) in the Bose-Hubbard model implemented with cold bosonic atoms in an optical lattice. The echo is obtained by applying a linear phase imprint on the lattice and a change in magnetic field to tune the boson-boson scattering length through a Feshbach resonance. I discuss how the echo can measure the fidelity of the quantum simulation, the intensity of an external potential (e.g. gravity), or the critical point of the superfluid-insulator quantum phase transition.
We present an approach using quantum walks (QWs) to redistribute ultracold atoms in an optical lattice. Different density profiles of atoms can be obtained by exploiting the controllable properties of QWs, such as the variance and the probability dis
We study the decay rate of the Loschmidt echo or fidelity in a chaotic system under a time-dependent perturbation $V(q,t)$ with typical strength $hbar/tau_{V}$. The perturbation represents the action of an uncontrolled environment interacting with th
Environment--induced decoherence causes entropy increase. It can be quantified using, e.g., the purity $varsigma={rm Tr}rho^2$. When the Hamiltonian of a quantum system is perturbed, its sensitivity to such perturbation can be measured by the Loschmi
Evaluating the role of perturbations versus the intrinsic coherent dynamics in driving to equilibrium is of fundamental interest to understand quantum many-body thermalization, in the quest to build ever complex quantum devices. Here we introduce a p
We introduce a new method for analysing the Bose-Hubbard model for an array of bosons with nearest neighbor interactions. It is based on a number-theoretic implementation of the creation and annihilation operators that constitute the model. One of th