ترغب بنشر مسار تعليمي؟ اضغط هنا

Simultaneous position and state measurement of Rydberg atoms

162   0   0.0 ( 0 )
 نشر من قبل Femius Koenderink
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a technique for state-selective position detection of cold Rydberg atoms. Ground state Rb atoms in a magneto-optical trap are excited to a Rydberg state and are subsequently ionized with a tailored electric field pulse. This pulse selectively ionizes only atoms in e.g. the 54d state and not in the 53d state. The released electrons are detected after a slow flight towards a micro channel plate. From the time of flight of the electrons the position of the atoms is deduced. The state selectivity is about 20:1 when comparing 54d with 53d and the one-dimensional position resolution ranges from 6 to 40 $mu$m over a range of 300 $mu$m. This state selectivity and position resolution are sufficient to allow for the observation of coherent quantum excitation transport.

قيم البحث

اقرأ أيضاً

The Knill-Laflamme-Milburn (KLM) states have been proved to be a useful resource for quantum information processing [Nature 409, 46 (2001)]. For atomic KLM states, several schemes have been put forward based on the time-dependent unitary dynamics, bu t the dissipative generation of these states has not been reported. This work discusses the possibility for creating different forms of bipartite KLM states in neutral atom system, where the spontaneous emission of excited Rydberg states, combined with the Rydberg antiblockade mechanism, is actively exploited to engineer a steady KLM state from an arbitrary initial state. The numerical simulation of the master equation signifies that a fidelity above 99% is available with the current experimental parameters.
46 - Tanvi P. Gujarati 2018
Schemes for creation of N particle entangled Greenberger-Horne-Zeilinger (GHZ) states are important for understanding multi-particle non-classical correlations. Here, a theoretical scheme for creation of a multi-particle GHZ state implemented on a ta rget ensemble of N, $Lambda$ three-level Rydberg atoms and a single Rydberg atom as a control using Stimulated Raman Adiabatic Passage (STIRAP) is presented. We work in the Rydberg blockade regime for the ensemble atoms induced due to excitation of the control atom to a high lying Rydberg level. It is shown that using STIRAP, atoms from one ground state of the ensemble can be adiabatically transferred to the other ground state, depending on the state of the control atom with high fidelity. Measurement of the control atom in a specific basis after this conditional transfer facilitates one-step creation of a N particle GHZ state. A thorough analysis of adiabatic conditions for this scheme and the influence of radiative decay from the excited Rydberg levels is presented. We show that this scheme is immune to the decay rate of the excited level in ensemble atoms and provides a robust way of creating GHZ states.
A dynamics regime of Rydberg atoms, unselective ground-state blockade (UGSB), is proposed in the context of Rydberg antiblockade (RAB), where the evolution of two atoms is suppressed when they populate in an identical ground state. UGSB is used to im plement a SWAP gate in one step without individual addressing of atoms. Aiming at circumventing common issues in RAB-based gates including atomic decay, Doppler dephasing, and fluctuations in the interatomic coupling strength, we modify the RAB condition to achieve a dynamical SWAP gate whose robustness is much greater than that of the nonadiabatic holonomic one in the conventional RAB regime. In addition, on the basis of the proposed SWAP gates, we further investigate the implementation of a three-atom Fredkin gate by combining Rydberg blockade and RAB. The present work may facilitate to implement the RAB-based gates of strongly coupled atoms in experiment.
We demonstrate a method for probing interaction effects in a thermal beam of strontium atoms using simultaneous measurements of Rydberg EIT and spontaneously created ions or electrons. We present a Doppler-averaged optical Bloch equation model that r eproduces the optical signals and allows us to connect the optical coherences and the populations. We use this to determine that the spontaneous ionization process in our system occurs due to collisions between Rydberg and ground state atoms in the EIT regime. We measure the cross section of this process to be 0.6 $pm$ 0.2 $sigma_{rm{geo}}$, where $sigma_{rm{geo}}$ is the geometrical cross section of the Rydberg atom. This results adds complementary insight to a range of recent studies of interacting thermal Rydberg ensembles.
We consider the temporal correlations of the quantum state of a qubit subject to simultaneous continuous measurement of two non-commuting qubit observables. Such qubit state correlators are defined for an ensemble of qubit trajectories, which has the same fixed initial state and can also be optionally constrained by a fixed final state. We develop a stochastic path integral description for the continuous quantum measurement and use it to calculate the considered correlators. Exact analytic results are possible in the case of ideal measurements of equal strength and are also shown to agree with solutions obtained using the Fokker-Planck equation. For a more general case with decoherence effects and inefficiency, we use a diagrammatic approach to find the correlators perturbatively in the quantum efficiency. We also calculate the state correlators for the quantum trajectories which are extracted from readout signals measured in a transmon qubit experiment, by means of the quantum Bayesian state update. We find an excellent agreement between the correlators based on the experimental data and those obtained from our analytical and numerical results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا