ﻻ يوجد ملخص باللغة العربية
We examine the use of noiseless subsystems for quantum information processing between two parties who do not share a common reference frame. In particular we focus on Bell inequalities in curved spaces and outline a theoretical procedure to test a Bell inequality, demonstrating the wide applicability of noiseless subsystems.
Quantum information requires protection from the adverse affects of decoherence and noise. This review provides an introduction to the theory of decoherence-free subspaces, noiseless subsystems, and dynamical decoupling. It addresses quantum information preservation as well protected computation.
We derive the general structure of noiseless subsystems for optical radiation contained in a sequence of pulses undergoing collective depolarization in an optical fiber. This result is used to identify optimal ways to implement quantum communication
Bell inequalities are important tools in contrasting classical and quantum behaviors. To date, most Bell inequalities are linear combinations of statistical correlations between remote parties. Nevertheless, finding the classical and quantum mechanic
We introduce Bell inequalities based on covariance, one of the most common measures of correlation. Explicit examples are discussed, and violations in quantum theory are demonstrated. A crucial feature of these covariance Bell inequalities is their n
The Averaged Null Energy Condition (ANEC) states that the integral along a complete null geodesic of the projection of the stress-energy tensor onto the tangent vector to the geodesic cannot be negative. ANEC can be used to rule out spacetimes with e