ﻻ يوجد ملخص باللغة العربية
We report precision measurements of the excited state lifetime of the $5p$ $^2P_{1/2}$ and $5p$ $^2P_{3/2}$ levels of a single trapped Cd$^+$ ion. The ion is excited with picosecond laser pulses from a mode-locked laser and the distribution of arrival times of spontaneously emitted photons is recorded. The resulting lifetimes are 3.148 $pm$ 0.011 ns and 2.647 $pm$ 0.010 ns for $^2P_{1/2}$ and $^2P_{3/2}$ respectively. With a total uncertainty of under 0.4%, these are among the most precise measurements of any atomic state lifetimes to date.
Atomic cadmium ions are loaded into radiofrequency ion traps by photoionization of atoms in a cadmium vapor with ultrafast laser pulses. The photoionization is driven through an intermediate atomic resonance with a frequency-quadrupled mode-locked Ti
This paper reports on photoionisation loading based on ultrafast pulses of singly-ionised strontium ions in a linear Paul trap. We take advantage of an autoionising resonance of Sr neutral atoms to form Sr+ by two-photon absorption of femtosecond pul
As one of the most striking features of quantum mechanics, quantum correlations are at the heart of quantum information science. Detection of correlations usually requires access to all the correlated subsystems. However, in many realistic scenarios
We demonstrate a new method for the direct measurement of atomic dipole transition matrix elements based on techniques developed for quantum information purposes. The scheme consists of measuring dispersive and absorptive off-resonant light-ion inter
Using a single trapped barium ion we have developed an rf spectroscopy technique to measure the ratio of the off-resonant vector ac Stark effect (or light shift) in the 6S_{1/2} and 5D_{3/2} states to 0.1% precision. We find R = Delta_S / Delta_D = -