ﻻ يوجد ملخص باللغة العربية
In this article we propose an alternate model for the so called {it protective measurements}, more appropriately {it adiabatic measurements} of a spin 1/2 system where the {it apparatus} is also a quantum system with a {em finite dimensional Hilbert space}. This circumvents several technical as well as conceptual issues that arise when dealing with an infinite dimensional Hilbert space as in the analysis of conventional Stern-Gerlach experiment. Here also it is demonstrated that the response of the detector is continuous and it {it directly} measures {em expectation values without altering the state of the system}(when the unknown original state is a {it nondegenerate eigenstate of the system Hamiltonian}, in the limit of {em ideal} adiabatic conditions. We have also computed the corrections arising out of the inevitable departures from ideal adiabaticity i.e the time of measurement being large but finite. To overcome the {em conceptual} difficulties with a {it quantum apparatus}, we have simulated a {it classical apparatus} as a {em large} assembly of spin-1/2 systems. We end this article with a conclusion and a discussion of some future issues.
Making measurements on single quantum systems is considered difficult, almost impossible if the state is a-priori unknown. Protective measurements suggest a possibility to measure single quantum systems and gain some new information in the process. P
We study protective quantum measurements in the presence of an environment and decoherence. We consider the model of a protectively measured qubit that also interacts with a spin environment during the measurement. We investigate how the coupling to
We prove a necessary and sufficient condition for the occurrence of entanglement in two two-level systems, simple enough to be of experimental interest. Our results are illustrated in the context of a spin star system analyzing the exact entanglement evolution of the central couple of spins.
Spectroscopic features revealing the coherent interaction of a degenerate two-level atomic system with two optical fields are examined. A model for the numerical calculation of the response of a degenerate two-level system to the action of an arbitra
Providing the microscopic behavior of a thermalization process has always been an intriguing issue. There are several models of thermalization, which often requires interaction of the system under consideration with the microscopic constituents of th