ﻻ يوجد ملخص باللغة العربية
We consider sequences of generalized Bell numbers B(n), n=0,1,... for which there exist Dobinski-type summation formulas; that is, where B(n) is represented as an infinite sum over k of terms P(k)^n/D(k). These include the standard Bell numbers and their generalizations appearing in the normal ordering of powers of boson monomials, as well as variants of the ordered Bell numbers. For any such B we demonstrate that every positive integral power of B(m(n)), where m(n) is a quadratic function of n with positive integral coefficients, is the n-th moment of a positive function on the positive real axis, given by a weighted infinite sum of log-normal distributions.
We consider the transformation properties of integer sequences arising from the normal ordering of exponentiated boson ([a,a*]=1) monomials of the form exp(x (a*)^r a), r=1,2,..., under the composition of their exponential generating functions (egf).
We consider properties of the operators D(r,M)=a^r(a^dag a)^M (which we call generalized Laguerre-type derivatives), with r=1,2,..., M=0,1,..., where a and a^dag are boson annihilation and creation operators respectively, satisfying [a,a^dag]=1. We o
We investigate properties of exponential operators preserving the particle number using combinatorial methods developed in order to solve the boson normal ordering problem. In particular, we apply generalized Dobinski relations and methods of multiva
We solve the boson normal ordering problem for (q(a*)a + v(a*))^n with arbitrary functions q and v and integer n, where a and a* are boson annihilation and creation operators, satisfying [a,a*]=1. This leads to exponential operators generalizing the
We present the results of the $gamma$-ray flux distribution study on the brightest blazars which are observed by the emph{Fermi}-LAT. We selected 50 brightest blazars based on the maximum number of detection reported in the LAT third AGN catalog. We