ﻻ يوجد ملخص باللغة العربية
It has been argued [T. Rudolph and B.C. Sanders, Phys. Rev. Lett. 87, 077903 (2001)] that continuous-variable quantum teleportation at optical frequencies has not been achieved because the source used (a laser) was not `truly coherent. Here I show that `true coherence is always illusory, as the concept of absolute time on a scale beyond direct human experience is meaningless. A laser is as good a clock as any other, even in principle, and this objection to teleportation experiments is baseless.
We show that the sender (Alice) and the receiver (Bob) each require coherent devices in order to achieve unconditional continuous variable quantum teleportation (CVQT), and this requirement cannot be achieved with conventional laser sources, even in
Although universal continuous-variable quantum computation cannot be achieved via linear optics (including squeezing), homodyne detection and feed-forward, inclusion of ideal photon counting measurements overcomes this obstacle. These measurements ar
A novel quantum switch for continuous variables teleportation is proposed. Two pairs of EPR beams with identical frequency and constant phase relation are composed on two beamsplitters to produce two pairs of conditional entangled beams, two of which
Quantum teleportation is a primitive in several important applications, including quantum communication, quantum computation, error correction, and quantum networks. In this work, we propose an optimal test for the performance of continuous-variable
We investigate continuous variable quantum teleportation using non-Gaussian states of the radiation field as entangled resources. We compare the performance of different classes of degaussified resources, including two-mode photon-added and two-mode