ﻻ يوجد ملخص باللغة العربية
A standard quantum oracle $S_f$ for a general function $f: Z_N to Z_N $ is defined to act on two input states and return two outputs, with inputs $ket{i}$ and $ket{j}$ ($i,j in Z_N $) returning outputs $ket{i}$ and $ket{j oplus f(i)}$. However, if $f$ is known to be a one-to-one function, a simpler oracle, $M_f$, which returns $ket{f(i)}$ given $ket{i}$, can also be defined. We consider the relative strengths of these oracles. We define a simple promise problem which minimal quantum oracles can solve exponentially faster than classical oracles, via an algorithm which cannot be naively adapted to standard quantum oracles. We show that $S_f$ can be constructed by invoking $M_f$ and $(M_f)^{-1}$ once each, while $Theta(sqrt{N})$ invocations of $S_f$ and/or $(S_f)^{-1}$ are required to construct $M_f$.
Selecting a set of basis states is a common task in quantum computing, in order to increase and/or evaluate their probabilities. This is similar to designing WHERE clauses in classical database queries. Even though one can find heuristic methods to a
We study to what extent quantum algorithms can speed up solving convex optimization problems. Following the classical literature we assume access to a convex set via various oracles, and we examine the efficiency of reductions between the different o
While powerful tools have been developed to analyze quantum query complexity, there are still many natural problems that do not fit neatly into the black box model of oracles. We create a new model that allows multiple oracles with differing costs. T
This paper describes a novel approach to solving unstructured search problems using a classical, signal-based emulation of a quantum computer. The classical nature of the representation allows one to perform subspace projections in addition to the us
This paper explores two circuit approaches for quantum walks: the first consists of generalised controlled