ترغب بنشر مسار تعليمي؟ اضغط هنا

Comment on: ``Solving the riddle of the bright mismatches: Labeling and effective binding in oligonucleotide arrays

84   0   0.0 ( 0 )
 نشر من قبل Enrico Carlon
 تاريخ النشر 2006
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a recent paper [Phys. Rev. E 68, 011906 (2003)], Naef and Magnasco suggested that the bright mismatches observed in Affymetrix microarray experiments are caused by the fluorescent molecules used to label RNA target sequences, which would impede target-probe hybridization. Their conclusion is based on the observation of unexpected asymmetries in the affinities obtained by fitting microarray data from publicly available experiments. We point out here that the observed asymmetry is due to the inequivalence of RNA and DNA, and that the reported affinities are consistent with stacking free energies obtained from melting experiments of unlabeled nucleic acids in solution. The conclusion of Naef and Magnasco is therefore based on an unjustified assumption.

قيم البحث

اقرأ أيضاً

In the past couple of years several studies have shown that hybridization in Affymetrix DNA microarrays can be rather well understood on the basis of simple models of physical chemistry. In the majority of the cases a Langmuir isotherm was used to fi t experimental data. Although there is a general consensus about this approach, some discrepancies between different studies are evident. For instance, some authors have fitted the hybridization affinities from the microarray fluorescent intensities, while others used affinities obtained from melting experiments in solution. The former approach yields fitted affinities that at first sight are only partially consistent with solution values. In this paper we show that this discrepancy exists only superficially: a sufficiently complete model provides effective affinities which are fully consistent with those fitted to experimental data. This link provides new insight on the relevant processes underlying the functioning of DNA microarrays.
Quantifying interactions in DNA microarrays is of central importance for a better understanding of their functioning. Hybridization thermodynamics for nucleic acid strands in aqueous solution can be described by the so-called nearest-neighbor model, which estimates the hybridization free energy of a given sequence as a sum of dinucleotide terms. Compared with its solution counterparts, hybridization in DNA microarrays may be hindered due to the presence of a solid surface and of a high density of DNA strands. We present here a study aimed at the determination of hybridization free energies in DNA microarrays. Experiments are performed on custom Agilent slides. The solution contains a single oligonucleotide. The microarray contains spots with a perfect matching complementary sequence and other spots with one or two mismatches: in total 1006 different probe spots, each replicated 15 times per microarray. The free energy parameters are directly fitted from microarray data. The experiments demonstrate a clear correlation between hybridization free energies in the microarray and in solution. The experiments are fully consistent with the Langmuir model at low intensities, but show a clear deviation at intermediate (non-saturating) intensities. These results provide new interesting insights for the quantification of molecular interactions in DNA microarrays.
The zinc finger structure where a Zn2+ ion binds to 4 cysteine or histidine amino acids in a tetrahedral structure is very common motif of nucleic acid binding proteins. The corresponding interaction model is present in 3% of the genes of human genom e. As a result, zinc finger has been shown to be extremely useful in various therapeutic and research capacities, as well as in biotechnology. In stable configuration, the cysteine amino acids are deprotonated and become negatively charged. This means the Zn2+ ion is overscreened by 4 cysteine charges (overcharged). It is question of whether this overcharged configuration is also stable when such negatively charged zinc finger binds to negatively charged DNA molecule. Using all atom molecular dynamics simulation up to microsecond range of an androgen receptor protein dimer, we investigate how the deprotonated state of cysteine influences its structure, dynamics, and function in binding o DNA molecules. Our results show that the deprotonated state of cysteine residues are essential for mechanical stabilization of the functional, folded conformation. Not only this state stabilizes the protein structure, it also stabilizes the protein-DNA binding complex. The differences in structural and energetic properties of the two (sequence-identical) monomers are also investigated showing the strong influence of DNA on the structure of zinc fingers upon complexation. Our result has potential impact on better molecular understanding of one of the most common classes of zinc fingers
Biophysicists are modeling conformations of interphase chromosomes, often basing the strengths of interactions between segments distant on the genetic map on contact frequencies determined experimentally. Here, instead, we develop a fitting-free, min imal model: bivalent red and green transcription factors bind to cognate sites in runs of beads (chromatin) to form molecular bridges stabilizing loops. In the absence of additional explicit forces, molecular dynamic simulations reveal that bound factors spontaneously cluster -- red with red, green with green, but rarely red with green -- to give structures reminiscent of transcription factories. Binding of just two transcription factors (or proteins) to active and inactive regions of human chromosomes yields rosettes, topological domains, and contact maps much like those seen experimentally. This emergent bridging-induced attraction proves to be a robust, simple, and generic force able to organize interphase chromosomes at all scales.
RNA/protein interactions play crucial roles in controlling gene expression. They are becoming important targets for pharmaceutical applications. Due to RNA flexibility and to the strength of electrostatic interactions, standard docking methods are in sufficient. We here present a computational method which allows studying the binding of RNA molecules and charged peptides with atomistic, explicit-solvent molecular dynamics. In our method, a suitable estimate of the electrostatic interaction is used as an order parameter (collective variable) which is then accelerated using bi-directional pulling simulations. Since the electrostatic interaction is only used to enhance the sampling, the approximations used to compute it do not affect the final accuracy. The method is employed to characterize the binding of TAR RNA from HIV-1 and a small cyclic peptide. Our simulation protocol allows blindly predicting the binding pocket and pose as well as the binding affinity. The method is general and could be applied to study other electrostatics-driven binding events.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا