ﻻ يوجد ملخص باللغة العربية
We demonstrate the robust scale-invariance in the probability density function (PDF) of detrended healthy human heart rate increments, which is preserved not only in a quiescent condition, but also in a dynamic state where the mean level of heart rate is dramatically changing. This scale-independent and fractal structure is markedly different from the scale-dependent PDF evolution observed in a turbulent-like, cascade heart rate model. These results strongly support the view that healthy human heart rate is controlled to converge continually to a critical state.
The CVS is composed of numerous interacting and dynamically regulated physiological subsystems which each generate measurable periodic components such that the CVS can itself be presented as a system of weakly coupled oscillators. The interactions be
The overarching goal of the present work is to contribute to the understanding of the relations between fetal heart rate (FHR) temporal dynamics and the well-being of the fetus, notably in terms of predicting cardiovascular decompensation (CVD). It m
An example of phase transition in natural complex systems is the qualitative and sudden change in the heart rhythm between sinus rhythm and atrial fibrillation (AF), the most common irregular heart rhythm in humans. While the system behavior is centr
Human heart rate is known to display complex fluctuations. Evidence of multifractality in heart rate fluctuations in healthy state has been reported [Ivanov et al., Nature {bf 399}, 461 (1999)]. This multifractal character could be manifested as a de
How do you use imaging to analyse the development of the heart, which not only changes shape but also undergoes constant, high-speed, quasi-periodic changes? We have integrated ideas from prospective and retrospective optical gating to capture long-t