We describe the characteristics of low-cost ultra-high-power light emitting diodes (LEDs) for use in optical imaging experiments. We use the LEDs in experiments with bullfrog cardiac tissue and find that the signal-to-noise ratio is comparable to other commonly used illumination sources.
Intense terahertz (THz) electromagnetic fields have been utilized to reveal a variety of extremely nonlinear optical effects in many materials through nonperturbative driving of elementary and collective excitations. However, such nonlinear photoresp
onses have not yet been discovered in light-emitting diodes (LEDs), letting alone employing them as fast, cost effective,compact, and room-temperature-operating THz detectors and cameras. Here we report ubiquitously available LEDs exhibited gigantic and fast photovoltaic signals with excellent signal-to-noise ratios when being illuminated by THz field strengths >50 kV/cm. We also successfully demonstrated THz-LED detectors and camera prototypes. These unorthodox THz detectors exhibited high responsivities (>1 kV/W) with response time shorter than those of pyroelectric detectors by four orders of magnitude. The detection mechanism was attributed to THz-field-induced nonlinear impact ionization and Schottky contact. These findings not only help deepen our understanding of strong THz field-matter interactions but also greatly contribute to the applications of strong-field THz diagnosis.
The radiative recombination of injected charge carriers gives rise to electroluminescence (EL), a central process for light-emitting diode (LED) operation. It is often presumed in some emerging fields of optoelectronics, including perovskite and orga
nic LEDs, that the minimum voltage required for light emission is the semiconductor bandgap divided by the elementary charge. Here we show for many classes of LEDs, including those based on metal halide perovskite, organic, chalcogenide quantum-dot and commercial III-V semiconductors, photon emission can be generally observed at record-low driving voltages of 36%-60% of their bandgaps, corresponding to a large apparent energy gain of 0.6-1.4 eV per emitted photon. Importantly, for various classes of LEDs with very different modes of charge injection and recombination (dark saturation current densities ranging from ~10^-35 to ~10^-21 mA/cm2), their EL intensity-voltage curves under low voltages exhibit similar behaviors, revealing a universal origin of ultralow-voltage device operation. Finally, we demonstrate as a proof-of-concept that perovskite LEDs can transmit data efficiently to a silicon detector at 1V, a voltage below the silicon bandgap. Our work provides a fresh insight into the operational limits of electroluminescent diodes, highlighting the significant potential of integrating low-voltage LEDs with silicon electronics for next-generation communications and computational applications.
We demonstrate a portable all-optical intrinsic scalar magnetic gradiometer composed of miniaturized cesium vapor cells and vertical-cavity surface-emitting lasers (VCSELs). Two cells, with an inner dimension of 5 mm x 5 mm x 5 mm and separated by a
baseline of 5 cm, are driven by one VCSEL and the resulting Larmor precessions are probed by a second VCSEL through optical rotation. The off-resonant linearly polarized probe light interrogates two cells at the same time and the output of the intrinsic gradiometer is proportional to the magnetic field gradient measured over the given baseline. This intrinsic gradiometer scheme has the advantage of avoiding added noise from combining two scalar magnetometers. We achieve better than 18 fT/cm/rt-Hz sensitivity in the gradient measurement. Ultra-sensitive short-baseline magnetic gradiometers can potentially play an important role in many practical applications, such as nondestructive evaluation and unexploded ordnance (UXO) detection. Another application of the gradiometer is for magnetocardiography (MCG) in an unshielded environment. Real-time MCG signals can be extracted from the raw gradiometer readings. The demonstrated gradiometer greatly simplifies the MCG setup and may lead to ubiquitous MCG measurement in the future.
A system using a personal computer, speaker, and a microphone is used to detect objects, and make crude measurements using a carrier modulated by a pseudorandom noise (PN) code. This system can be constructed using a personal computer and audio equip
ment commonly found in the laboratory or at home, or more sophisticated equipment that can be purchased at reasonable cost. We demonstrate its value as an instructional tool for teaching concepts of remote sensing and digital signal processing.
Perovskite-based optoelectronic devices have gained significant attention due to their remarkable performance and low processing cost, particularly for solar cells. However, for perovskite light-emitting diodes (LEDs), non-radiative charge carrier re
combination has limited electroluminescence (EL) efficiency. Here we demonstrate perovskite-polymer bulk heterostructure LEDs exhibiting record-high external quantum efficiencies (EQEs) exceeding 20%, and an EL half-life of 46 hours under continuous operation. This performance is achieved with an emissive layer comprising quasi-2D and 3D perovskites and an insulating polymer. Transient optical spectroscopy reveals that photogenerated excitations at the quasi-2D perovskite component migrate to lower-energy sites within 1 ps. The dominant component of the photoluminescence (PL) is primarily bimolecular and is characteristic of the 3D regions. From PL quantum efficiency and transient kinetics of the emissive layer with/without charge-transport contacts, we find non-radiative recombination pathways to be effectively eliminated. Light outcoupling from planar LEDs, as used in OLED displays, generally limits EQE to 20-30%, and we model our reported EL efficiency of over 20% in the forward direction to indicate the internal quantum efficiency (IQE) to be close to 100%. Together with the low drive voltages needed to achieve useful photon fluxes (2-3 V for 0.1-1 mA/cm2), these results establish that perovskite-based LEDs have significant potential for light-emission applications.