ﻻ يوجد ملخص باللغة العربية
A challenging problem in physics concerns the possibility of forecasting rare but extreme phenomena such as large earthquakes, financial market crashes, and material rupture. A promising line of research involves the early detection of precursory log-periodic oscillations to help forecast extreme events in collective phenomena where discrete scale invariance plays an important role. Here I investigate two distinct approaches towards the general problem of how to detect log-periodic oscillations in arbitrary time series without prior knowledge of the location of the moveable singularity. I first show that the problem has a definite solution in Fourier space, however the technique involved requires an unrealistically large signal to noise ratio. I then show that the quadrature signal obtained via analytic continuation onto the imaginary axis, using the Hilbert transform, necessarily retains the log-periodicities found in the original signal. This finding allows the development of a new method of detecting log-periodic oscillations that relies on calculation of the instantaneous phase of the analytic signal. I illustrate the method by applying it to the well documented stock market crash of 1987. Finally, I discuss the relevance of these findings for parametric rather than nonparametric estimation of critical times.
Much recent empirical evidence shows that textit{community structure} is ubiquitous in the real-world networks. In this Letter, we propose a growth model to create scale-free networks with the tunable strength (noted by $Q$) of community structure an
Starting from inhomogeneous time scaling and linear decorrelation between successive price returns, Baldovin and Stella recently proposed a way to build a model describing the time evolution of a financial index. We first make it fully explicit by us
Partial Wave Analysis has traditionally been carried out using a set of tools handcrafted for each experiment. By taking an object-oriented approach, the design presented in this paper attempts to create a more generally useful, and easily extensible
Analog forecasting is a nonparametric technique introduced by Lorenz in 1969 which predicts the evolution of states of a dynamical system (or observables defined on the states) by following the evolution of the sample in a historical record of observ
In this work, we address time-series forecasting as a computer vision task. We capture input data as an image and train a model to produce the subsequent image. This approach results in predicting distributions as opposed to pointwise values. To asse