ترغب بنشر مسار تعليمي؟ اضغط هنا

Rotational Excitation of HC_3N by H_2 and He at low temperatures

262   0   0.0 ( 0 )
 نشر من قبل Laurent Wiesenfeld
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Michael Wernli




اسأل ChatGPT حول البحث

Rates for rotational excitation of HC3N by collisions with He atoms and H2 molecules are computed for kinetic temperatures in the range 5-20K and 5-100K, respectively. These rates are obtained from extensive quantum and quasi-classical calculations using new accurate potential energy surfaces (PES).



قيم البحث

اقرأ أيضاً

Trapped Be+ ions are a leading platform for quantum information science [1], but reactions with background gas species, such as H2 and H2O, result in qubit loss. Our experiment reveals that the BeOH+ ion is the final trapped ion species when both H2 and H2O exist in a vacuum system with cold, trapped Be+. To understand the loss mechanism, low-temperature reactions between sympathetically cooled BeD+ ions and H2O molecules have been investigated using an integrated, laser-cooled Be+ ion trap and high-resolution Time-of-Flight (TOF) mass spectrometer (MS) [2]. Among all the possible products,BeH2O+, H2DO+, BeOD+, and BeOH+, only the BeOH+ molecular ion was observed experimentally, with the assumed co-product of HD. Theoretical analyses based on explicitly correlated restricted coupled cluster singles, doubles, and perturbative triples (RCCSD(T)-F12) method with the augmented correlation-consistent polarized triple zeta (AVTZ) basis set reveal that two intuitive direct abstraction product channels, Be + H2DO+ and D + BeH2O+, are not energetically accessible at the present reaction temperature (~150 K). Instead, a double displacement BeOH+ + HD product channel is accessible due to a large exothermicity of 1.885 eV through a submerged barrier in the reaction pathway. While the BeOD+ + H2 product channel has a similar exothermicity, the reaction pathway is dynamically unfavourable, as suggested by a Sudden Vector Projection analysis. This work sheds light on the origin of the loss and contaminations of the laser-cooled Be+ ions in quantum-information experiments.
Results for quantum mechanical calculations of the integral cross sections and corresponding thermal rate coefficients for para-/ortho-H2+HD collisions are presented. Because of significant astrophysical interest in regard to the cooling of primodial gas the low temperature limit of para-/ortho-H2+HD is investigated. Sharp resonances in the rotational state-resolved cross sections have been calculated at low energies. These resonances are important and significantly contribute to the corresponding rotational state-resolved thermal rate coefficients, particularly at low temperatures, that is less than $T sim 100$K. Additionally in this work, the cross sections for the elastic HD+HD collision have also been calculated. We obtained quite satisfactory agreement with the results of other theoretical works and experiments.
Two isotopic chemical reactions, $mathrm{Ne}^*$ + NH$_3$, and $mathrm{Ne}^*$ + ND$_3$, have been studied at low collision energies by means of a merged beams technique. Partial cross sections have been recorded for the two reactive channels, namely $ mathrm{Ne}^*$ + NH$_3$ $rightarrow$ Ne + NH$_3^+$ + $e^-$, and $mathrm{Ne}^*$ + NH$_3$ $rightarrow$ Ne + NH$_2^+$ + H + $e^-$, by detecting the NH$_3^+$ and NH$_2^+$ product ions, respectively. The cross sections for both reactions were found to increase with decreasing collision energy, $E_{coll}$, in the range 8 $mu$eV$<E_{coll}<$ 20 meV. The measured rate constant exhibits a curvature in a log(k)-log($E_{coll}$) plot from which it is concluded that the Langevin capture model does not properly describe the $mathrm{Ne}^*$ + NH$_3$ reaction in the entire range of collision energies covered here. Calculations based on multichannel quantum defect theory were performed to reproduce and interpret the experimental results. Good agreement was obtained by including long range van der Waals interactions combined with a 6-12 Lennard-Jones potential. The branching ratio between the two reactive channels, $Gamma = frac{[NH_2^+]}{[NH_2^+]+[NH_3^+]}$, is relatively constant, $Gammaapprox 0.3$, in the entire collision energy range studied here. Possible reasons for this observation are discussed and rationalised in terms of relative time scales of the reactant approach and the molecular rotation. Isotopic differences between the $mathrm{Ne}^*$ + NH$_3$ and $mathrm{Ne}^*$ + ND$_3$ reactions are small, as suggested by nearly equal branching ratios and cross sections for the two reactions.
Methyl valerate (C$_6$H$_{12}$O$_2$, methyl pentanoate) is a methyl ester and a relevant surrogate component for biodiesel. In this work, we present ignition delays of methyl valerate measured using a rapid compression machine at a range of engine-re levant temperature, pressure, and equivalence ratio conditions. The conditions we have studied include equivalence ratios from 0.25 to 2.0, temperatures between 680 K and 1050 K, and pressures of 15 bar and 30 bar. The ignition delay data demonstrate a negative temperature coefficient region in the temperature range of 720 K-800 K for both $phi$=2.0, 15 bar and $phi$=1.0, 30 bar, with two-stage ignition apparent over the narrower temperature ranges of 720 K-760 K for the lower pressure and 740 K-800 K at the higher pressure. In addition, the experimental ignition delay data are compared with simulations using an existing chemical kinetic model from the literature. The simulations with the literature model under-predict the data by factors between 2 and 10 over the entire range of the experimental data. To help determine the possible reasons for the discrepancy between simulations and experiments, a new chemical kinetic model is developed using the Reaction Mechanism Generator (RMG) software. The agreement between the experimental data and the RMG model is improved but still not satisfactory. Directions for future improvement of the methyl valerate model are discussed.
Collisions in a beam of unidirectional quantized vortex rings of nearly identical radii $R$ in superfluid $^4$He in the limit of zero temperature (0.05 K) were studied using time-of-flight spectroscopy. Reconnections between two primary rings result in secondary vortex loops of both smaller and larger radii. Discrete steps in the distribution of flight times, due to the limits on the earliest possible arrival times of secondary loops created after either one or two consecutive reconnections, are observed. The density of primary rings was found to be capped at the value $500{rm ,cm}^{-2} R^{-1}$ independent of the injected density. This is due to collisions between rings causing piling-up of many other vortex rings. Both observations are in quantitative agreement with our theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا