ترغب بنشر مسار تعليمي؟ اضغط هنا

Generation of Arbitrary Frequency Chirps with a Fiber-Based Phase Modulator and Self-Injection-Locked Diode Laser

74   0   0.0 ( 0 )
 نشر من قبل Jennifer Carini
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a novel technique for producing pulses of laser light whose frequency is arbitrarily chirped. The output from a diode laser is sent through a fiber-optical delay line containing a fiber-based electro-optical phase modulator. Upon emerging from the fiber, the phase-modulated pulse is used to injection-lock the laser and the process is repeated. Large phase modulations are realized by multiple passes through the loop while the high optical power is maintained by self-injection-locking after each pass. Arbitrary chirps are produced by driving the modulator with an arbitrary waveform generator.



قيم البحث

اقرأ أيضاً

Two extended cavity laser diodes are phase-locked, thanks to an intra-cavity electro-optical modulator. The phase-locked loop bandwidth is on the order of 10 MHz, which is about twice larger than when the feedback correction is applied on the laser c urrent. The phase noise reaches -120 dBrad$^2$/Hz at 10 kHz. This new scheme reduces the residual laser phase noise, which constitutes one of the dominant contributions in the sensitivity limit of atom interferometers using two-photon transitions.
Microresonator-based optical frequency combs have been a topic of extensive research during the last few years. Several theoretical models for the comb generation have been proposed; however, they do not comprehensively address experimental results t hat show a variety of independent comb generation mechanisms. Here, we present frequency-domain experiments that illuminate the transition of microcombs into phase-locked states, which show characteristics of injection locking between ensembles of comb modes. In addition, we demonstrate the existence of equidistant optical frequency combs that are phase stable but with non-deterministic phase relationships between individual comb modes.
Atomic layer graphene possesses wavelength-insensitive ultrafast saturable absorption, which can be exploited as a full-band mode locker. Taking advantage of the wide band saturable absorption of the graphene, we demonstrate experimentally that wide range (1570 nm - 1600nm) continuous wavelength tunable dissipative solitons could be formed in an erbium doped fiber laser mode locked with few layer graphene.
A general mechanism for the generation of frequency combs referenced to atomic resonances is put forward. The mechanism is based on the periodic phase control of a quantum systems dipole response. We develop an analytic description of the comb spectr al structure, depending on both the atomic and the phase-control properties. We further suggest an experimental implementation of our scheme: Generating a frequency comb in the soft-x-ray spectral region, which can be realized with currently available techniques and radiation sources. The universality of this mechanism allows the generalization of frequency-comb technology to arbitrary frequencies, including the hard-x-ray regime by using reference transitions in highly charged ions.
We present a resonantly frequency-doubled tapered amplified semiconductor laser system emitting up to 2.6 W blue light at 400 nm. The output power is stable on both short and long timescales with 0.12% RMS relative intensity noise, and less than 0.15 %/h relative power loss over 16 hours of free running continuous operation. Furthermore, the output power can be actively stabilized, and the alignment of the input beams of the tapered amplifier chip, the frequency doubling cavity and-in case of fiber output-the fiber can be optimized automatically using computer-controlled mirrors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا