ﻻ يوجد ملخص باللغة العربية
In this paper, we quantitatively investigate the properties of a statistical ensemble of stock prices. We focus attention on the relative price defined as $ X(t) = S(t)/S(0) $, where $ S(0) $ is the initial price. We selected approximately 3200 stocks traded on the Japanese Stock Exchange and formed a statistical ensemble of daily relative prices for each trading day in the 3-year period from January 4, 1999 to December 28, 2001, corresponding to the period in which the {it internet Bubble} formed and {it crashes} in the Japanese stock market. We found that the upper tail of the complementary cumulative distribution function of the ensemble of the relative prices in the high value of the price is well described by a power-law distribution, $ P(S>x) sim x^{-alpha} $, with an exponent that moves over time. Furthermore, we found that as the power-law exponents $ alpha $ approached {it two}, the bubble burst. It is reasonable to assume that when the power-law exponents approached {it two}, it indicates the bubble is about to burst. PACS: 89.65.Gh; Keywords: Market crashes, Power law, Precursor
Detailed empirical studies of publicly traded business firms have established that the standard deviation of annual sales growth rates decreases with increasing firm sales as a power law, and that the sales growth distribution is non-Gaussian with sl
Inter-firm organizations, which play a driving role in the economy of a country, can be represented in the form of a customer-supplier network. Such a network exhibits a heavy-tailed degree distribution, disassortative mixing and a prominent communit
Understanding cities is central to addressing major global challenges from climate and health to economic resilience. Although increasingly perceived as fundamental socio-economic units, the detailed fabric of urban economic activities is only now ac
We have recently introduced the ``thermal optimal path (TOP) method to investigate the real-time lead-lag structure between two time series. The TOP method consists in searching for a robust noise-averaged optimal path of the distance matrix along wh
We describe the impact of the intra-day activity pattern on the autocorrelation function estimator. We obtain an exact formula relating estimators of the autocorrelation functions of non-stationary process to its stationary counterpart. Hence, we pro