ﻻ يوجد ملخص باللغة العربية
The formal structure of the early Einsteins Special Relativity follows the axiomatic deductive method of Euclidean geometry. In this paper we show the deep-rooted relation between Euclidean and space-time geometries that are both linked to a two-dimensional number system: the complex and hyperbolic numbers, respectively. By studying the properties of these numbers together, pseudo-Euclidean trigonometry has been formalized with an axiomatic deductive method and this allows us to give a complete quantitative formalization of the twin paradox in a familiar Euclidean way for uniform motions as well as for accelerated ones.
By analogy with complex numbers, a system of hyperbolic numbers can be introduced in the same way: z=x+h*y with h*h=1 and x,y real numbers. As complex numbers are linked to the Euclidean geometry, so this system of numbers is linked to the pseudo-Euc
Relativistic kinematics is usually considered only as a manifestation of pseudo-Euclidean (Lorentzian) geometry of space-time. However, as it is explicitly stated in General Relativity, the geometry itself depends on dynamics, specifically, on the en
The twin paradox, which evokes from the the idea that two twins may age differently because of their relative motion, has been studied and explained ever since it was first described in 1906, the year after special relativity was invented. The questi
Recently Abramowicz and Bajtlik [ArXiv: 0905.2428 (2009)] have studied the twin paradox in Schwarzschild spacetime. Considering circular motion they showed that the twin with a non-vanishing 4-acceleration is older than his brother at the reunion and
We propose an implementation of a twin paradox scenario in superconducting circuits, with velocities as large as a few percent of the speed of light. Ultrafast modulation of the boundary conditions for the electromagnetic field in a microwave cavity