ترغب بنشر مسار تعليمي؟ اضغط هنا

Design of a Polarised Positron Source Based on Laser Compton Scattering

86   0   0.0 ( 0 )
 نشر من قبل Klaus Moenig
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a scheme for producing polarised positrons at the ILC from polarised X-rays created by Compton scattering of a few-GeV electron beam off a CO2 or YAG laser. This scheme is very energy effective using high finesse laser cavities in conjunction with an electron storage ring.

قيم البحث

اقرأ أيضاً

The generation of ultra-relativistic positron beams with short duration ($tau_{e^+} leq 30$ fs), small divergence ($theta_{e^+} simeq 3$ mrad), and high density ($n_{e^+} simeq 10^{14} - 10^{15}$ cm$^{-3}$) from a fully optical setup is reported. The detected positron beam propagates with a high-density electron beam and $gamma$-rays of similar spectral shape and peak energy, thus closely resembling the structure of an astrophysical leptonic jet. It is envisaged that this experimental evidence, besides the intrinsic relevance to laser-driven particle acceleration, may open the pathway for the small-scale study of astrophysical leptonic jets in the laboratory.
Positron sources are critical components of the future linear collider projects. This is essentially due to the high luminosity required, orders of magnitude higher than existing ones. In addition, polarization of the positron beam rather expands the physics research potential of the machine. In this framework, the Compton sources for polarized positron production are taken into account where the high energy gamma rays are produced by the Compton scattering and subsequently converted into the polarized electron-positron pairs in a target-converter. The Compton multiple Interaction Point (IP) line is proposed as one of the solutions to increase the number of the positrons produced. The gamma ray production with the Compton multiple IP line is simulated and used for polarized positron generation. Later, a capture section based on an adiabatic matching device (AMD) followed by a pre-injector linac is simulated to capture and accelerate the positron beam.
120 - I. Gadjev , N. Sudar , M. Babzien 2017
The generation of X-rays and {gamma}-rays based on synchrotron radiation from free electrons, emitted in magnet arrays such as undulators, forms the basis of much of modern X-ray science. This approach has the drawback of requiring very high energy, up to the multi-GeV-scale, electron beams, to obtain the required photon energy. Due to the limit in accelerating gradients in conventional particle accelerators, reaching high energy typically demands use of instruments exceeding 100s of meters in length. Compact, less costly, monochromatic X-ray sources based on very high field acceleration and very short period undulators, however, may revolutionize diverse advanced X-ray applications ranging from novel X-ray therapy techniques to active interrogation of sensitive materials, by making them accessible in cost and size. Such compactness may be obtained by an all-optical approach, which employs a laser-driven high gradient accelerator based on inverse free electron laser (IFEL), followed by a collision point for inverse Compton scattering (ICS), a scheme where a laser is used to provide undulator fields. We present an experimental proof-of-principle of this approach, where a TW-class CO2 laser pulse is split in two, with half used to accelerate a high quality electron beam up to 84 MeV through the IFEL interaction, and the other half acts as an electromagnetic undulator to generate up to 13 keV X-rays via ICS. These results demonstrate the feasibility of this scheme, which can be joined with other techniques such as laser recirculation to yield very compact, high brilliance photon sources, extending from the keV to MeV scale. Furthermore, use of the IFEL acceleration with the ICS interaction produces a train of very high intensity X-ray pulses, thus also permitting a unique tool that can be phase-locked to a laser pulse in frontier pump-probe experimental scenarios.
The beam energy measurement system for the VEPP-2000 electron-positron collider is described. The method of Compton backscattering of $CO$ laser photons on the electron beam is used. The relative systematic uncertainty of the beam energy determinatio n is estimated as 6cdot10^{-5}. It was obtained through comparison of the results of the beam energy measurements using the Compton backscattering and resonance depolarization methods.
Sub-micron defects represent a well-known fundamental problem in manufacturing since they can significantly affect performance and lifetime of virtually any high-value component. Positron annihilation lifetime spectroscopy is arguably the only establ ished method capable of detecting defects down to the sub-nanometer scale but, to date, it only works for surface studies, and with limited resolution. Here, we experimentally and numerically show that laser-driven systems can overcome these well-known limitations, by generating ultra-short positron beams with a kinetic energy tuneable from 500 keV up to 2 MeV and a number of positrons per shot in a 50 keV energy slice color{black} of the order of $10^3$. Numerical simulations of the expected performance of a typical mJ-scale kHz laser demonstrate the possibility of generating MeV-scale narrow-band and ultra-short positron beams with a flux exceeding $10^5$ positrons/s, of interest for fast volumetric scanning of materials at high resolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا